Skip to content

Revert union, difference, etc. complexity changes #958

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 14 additions & 14 deletions containers/src/Data/Map/Internal.hs
Original file line number Diff line number Diff line change
Expand Up @@ -1811,7 +1811,7 @@ unionsWith f ts
{-# INLINABLE unionsWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\).
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@.
-- It prefers @t1@ when duplicate keys are encountered,
-- i.e. (@'union' == 'unionWith' 'const'@).
Expand All @@ -1835,7 +1835,7 @@ union t1@(Bin _ k1 x1 l1 r1) t2 = case split k1 t2 of
{--------------------------------------------------------------------
Union with a combining function
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Union with a combining function.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

Expand All @@ -1855,7 +1855,7 @@ unionWith f (Bin _ k1 x1 l1 r1) t2 = case splitLookup k1 t2 of
{-# INLINABLE unionWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\).
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- Union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
Expand Down Expand Up @@ -1886,7 +1886,7 @@ unionWithKey f (Bin _ k1 x1 l1 r1) t2 = case splitLookup k1 t2 of
-- relies on doing it the way we do, and it's not clear whether that
-- bound holds the other way.

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Difference of two maps.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Difference of two maps.
-- Return elements of the first map not existing in the second map.
--
-- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"
Expand All @@ -1905,7 +1905,7 @@ difference t1 (Bin _ k _ l2 r2) = case split k t1 of
{-# INLINABLE difference #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Remove all keys in a 'Set' from a 'Map'.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Remove all keys in a 'Set' from a 'Map'.
--
-- @
-- m \`withoutKeys\` s = 'filterWithKey' (\\k _ -> k ``Set.notMember`` s) m
Expand Down Expand Up @@ -1964,7 +1964,7 @@ differenceWithKey f =
{--------------------------------------------------------------------
Intersection
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Intersection of two maps.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection of two maps.
-- Return data in the first map for the keys existing in both maps.
-- (@'intersection' m1 m2 == 'intersectionWith' 'const' m1 m2@).
--
Expand All @@ -1986,7 +1986,7 @@ intersection t1@(Bin _ k x l1 r1) t2
{-# INLINABLE intersection #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Restrict a 'Map' to only those keys
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Restrict a 'Map' to only those keys
-- found in a 'Set'.
--
-- @
Expand All @@ -2011,7 +2011,7 @@ restrictKeys m@(Bin _ k x l1 r1) s
{-# INLINABLE restrictKeys #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Intersection with a combining function.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

Expand All @@ -2031,7 +2031,7 @@ intersectionWith f (Bin _ k x1 l1 r1) t2 = case mb of
{-# INLINABLE intersectionWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Intersection with a combining function.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"
Expand All @@ -2053,7 +2053,7 @@ intersectionWithKey f (Bin _ k x1 l1 r1) t2 = case mb of
{--------------------------------------------------------------------
Disjoint
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Check whether the key sets of two
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Check whether the key sets of two
-- maps are disjoint (i.e., their 'intersection' is empty).
--
-- > disjoint (fromList [(2,'a')]) (fromList [(1,()), (3,())]) == True
Expand Down Expand Up @@ -2752,7 +2752,7 @@ mergeWithKey f g1 g2 = go
{--------------------------------------------------------------------
Submap
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\).
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- This function is defined as (@'isSubmapOf' = 'isSubmapOfBy' (==)@).
--
isSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
Expand All @@ -2761,7 +2761,7 @@ isSubmapOf m1 m2 = isSubmapOfBy (==) m1 m2
{-# INLINABLE isSubmapOf #-}
#endif

{- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\).
{- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
The expression (@'isSubmapOfBy' f t1 t2@) returns 'True' if
all keys in @t1@ are in tree @t2@, and when @f@ returns 'True' when
applied to their respective values. For example, the following
Expand Down Expand Up @@ -2810,7 +2810,7 @@ submap' f (Bin _ kx x l r) t
{-# INLINABLE submap' #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Is this a proper submap? (ie. a submap but not equal).
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Is this a proper submap? (ie. a submap but not equal).
-- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' (==)@).
isProperSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOf m1 m2
Expand All @@ -2819,7 +2819,7 @@ isProperSubmapOf m1 m2
{-# INLINABLE isProperSubmapOf #-}
#endif

{- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Is this a proper submap? (ie. a submap but not equal).
{- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Is this a proper submap? (ie. a submap but not equal).
The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when
@keys m1@ and @keys m2@ are not equal,
all keys in @m1@ are in @m2@, and when @f@ returns 'True' when
Expand Down
8 changes: 4 additions & 4 deletions containers/src/Data/Map/Strict/Internal.hs
Original file line number Diff line number Diff line change
Expand Up @@ -980,7 +980,7 @@ unionsWith f ts
{--------------------------------------------------------------------
Union with a combining function
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Union with a combining function.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

Expand All @@ -996,7 +996,7 @@ unionWith f (Bin _ k1 x1 l1 r1) t2 = case splitLookup k1 t2 of
{-# INLINABLE unionWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\).
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- Union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
Expand Down Expand Up @@ -1054,7 +1054,7 @@ differenceWithKey f = merge preserveMissing dropMissing (zipWithMaybeMatched f)
Intersection
--------------------------------------------------------------------}

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Intersection with a combining function.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

Expand All @@ -1072,7 +1072,7 @@ intersectionWith f (Bin _ k x1 l1 r1) t2 = case mb of
{-# INLINABLE intersectionWith #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Intersection with a combining function.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"
Expand Down
14 changes: 7 additions & 7 deletions containers/src/Data/Set/Internal.hs
Original file line number Diff line number Diff line change
Expand Up @@ -269,7 +269,7 @@ import Language.Haskell.TH ()
--------------------------------------------------------------------}
infixl 9 \\ --

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). See 'difference'.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). See 'difference'.
(\\) :: Ord a => Set a -> Set a -> Set a
m1 \\ m2 = difference m1 m2
#if __GLASGOW_HASKELL__
Expand Down Expand Up @@ -654,7 +654,7 @@ alteredSet x0 s0 = go x0 s0
{--------------------------------------------------------------------
Subset
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\).
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- @(s1 \`isProperSubsetOf\` s2)@ indicates whether @s1@ is a
-- proper subset of @s2@.
--
Expand All @@ -669,7 +669,7 @@ isProperSubsetOf s1 s2
#endif


-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\).
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- @(s1 \`isSubsetOf\` s2)@ indicates whether @s1@ is a subset of @s2@.
--
-- @
Expand Down Expand Up @@ -724,7 +724,7 @@ isSubsetOfX (Bin _ x l r) t
{--------------------------------------------------------------------
Disjoint
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Check whether two sets are disjoint
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Check whether two sets are disjoint
-- (i.e., their intersection is empty).
--
-- > disjoint (fromList [2,4,6]) (fromList [1,3]) == True
Expand Down Expand Up @@ -815,7 +815,7 @@ unions = Foldable.foldl' union empty
{-# INLINABLE unions #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). The union of two sets, preferring the first set when
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). The union of two sets, preferring the first set when
-- equal elements are encountered.
union :: Ord a => Set a -> Set a -> Set a
union t1 Tip = t1
Expand All @@ -835,7 +835,7 @@ union t1@(Bin _ x l1 r1) t2 = case splitS x t2 of
{--------------------------------------------------------------------
Difference
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). Difference of two sets.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Difference of two sets.
--
-- Return elements of the first set not existing in the second set.
--
Expand All @@ -856,7 +856,7 @@ difference t1 (Bin _ x l2 r2) = case split x t1 of
{--------------------------------------------------------------------
Intersection
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n+1}{m+1}\bigr)\bigr), \; m \leq n\). The intersection of two sets.
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). The intersection of two sets.
-- Elements of the result come from the first set, so for example
--
-- > import qualified Data.Set as S
Expand Down