Skip to content

[Tests] Speed up panorama tests #3067

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Apr 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions tests/pipelines/stable_diffusion/test_stable_diffusion_panorama.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
layers_per_block=1,
sample_size=32,
in_channels=4,
out_channels=4,
Expand Down Expand Up @@ -101,7 +101,7 @@ def get_dummy_inputs(self, device, seed=0):
# Setting height and width to None to prevent OOMs on CPU.
"height": None,
"width": None,
"num_inference_steps": 2,
"num_inference_steps": 1,
"guidance_scale": 6.0,
"output_type": "numpy",
}
Expand All @@ -119,10 +119,18 @@ def test_stable_diffusion_panorama_default_case(self):
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)

expected_slice = np.array([0.4794, 0.5084, 0.4992, 0.3941, 0.3555, 0.4754, 0.5248, 0.5224, 0.4839])
expected_slice = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757])

assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

# override to speed the overall test timing up.
def test_inference_batch_consistent(self):
super().test_inference_batch_consistent(batch_sizes=[1, 2])

# override to speed the overall test timing up.
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(batch_size=2)

def test_stable_diffusion_panorama_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
Expand All @@ -138,7 +146,7 @@ def test_stable_diffusion_panorama_negative_prompt(self):

assert image.shape == (1, 64, 64, 3)

expected_slice = np.array([0.5029, 0.5075, 0.5002, 0.3965, 0.3584, 0.4746, 0.5271, 0.5273, 0.4877])
expected_slice = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757])

assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Expand All @@ -158,7 +166,7 @@ def test_stable_diffusion_panorama_euler(self):

assert image.shape == (1, 64, 64, 3)

expected_slice = np.array([0.4934, 0.5455, 0.4847, 0.5022, 0.5572, 0.4833, 0.5207, 0.4952, 0.5051])
expected_slice = np.array([0.4886, 0.5586, 0.4476, 0.5053, 0.6013, 0.4737, 0.5538, 0.5100, 0.4927])

assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Expand Down
11 changes: 6 additions & 5 deletions tests/test_pipelines_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,8 +175,8 @@ def test_pipeline_call_signature(self):
f"Required optional parameters not present: {remaining_required_optional_parameters}",
)

def test_inference_batch_consistent(self):
self._test_inference_batch_consistent()
def test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]):
self._test_inference_batch_consistent(batch_sizes=batch_sizes)

def _test_inference_batch_consistent(
self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"]
Expand Down Expand Up @@ -235,11 +235,12 @@ def _test_inference_batch_consistent(

logger.setLevel(level=diffusers.logging.WARNING)

def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical()
def test_inference_batch_single_identical(self, batch_size=3):
self._test_inference_batch_single_identical(batch_size=batch_size)

def _test_inference_batch_single_identical(
self,
batch_size=3,
test_max_difference=None,
test_mean_pixel_difference=None,
relax_max_difference=False,
Expand Down Expand Up @@ -267,7 +268,7 @@ def _test_inference_batch_single_identical(

# batchify inputs
batched_inputs = {}
batch_size = 3
batch_size = batch_size
for name, value in inputs.items():
if name in self.batch_params:
# prompt is string
Expand Down