Skip to content

Write model card in controlnet training script #3229

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 26, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 58 additions & 1 deletion examples/controlnet/train_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,17 @@
logger = get_logger(__name__)


def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols

w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))

for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid


def log_validation(vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step):
logger.info("Running validation... ")

Expand Down Expand Up @@ -156,6 +167,8 @@ def log_validation(vae, text_encoder, tokenizer, unet, controlnet, args, acceler
else:
logger.warn(f"image logging not implemented for {tracker.name}")

return image_logs


def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
Expand All @@ -177,6 +190,43 @@ def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: st
raise ValueError(f"{model_class} is not supported.")


def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
img_str = ""
if image_logs is not None:
img_str = "You can find some example images below.\n"
for i, log in enumerate(image_logs):
images = log["images"]
validation_prompt = log["validation_prompt"]
validation_image = log["validation_image"]
validation_image.save(os.path.join(repo_folder, "image_control.png"))
img_str += f"prompt: {validation_prompt}\n"
images = [validation_image] + images
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
img_str += f"![images_{i})](./images_{i}.png)\n"

yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
inference: true
---
"""
model_card = f"""
# controlnet-{repo_id}

These are controlnet weights trained on {base_model} with new type of conditioning.
{img_str}
"""
with open(os.path.join(repo_folder, "README.md"), "w") as f:
f.write(yaml + model_card)


def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
parser.add_argument(
Expand Down Expand Up @@ -936,6 +986,7 @@ def load_model_hook(models, input_dir):
disable=not accelerator.is_local_main_process,
)

image_logs = None
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(controlnet):
Expand Down Expand Up @@ -1007,7 +1058,7 @@ def load_model_hook(models, input_dir):
logger.info(f"Saved state to {save_path}")

if args.validation_prompt is not None and global_step % args.validation_steps == 0:
log_validation(
image_logs = log_validation(
vae,
text_encoder,
tokenizer,
Expand All @@ -1033,6 +1084,12 @@ def load_model_hook(models, input_dir):
controlnet.save_pretrained(args.output_dir)

if args.push_to_hub:
save_model_card(
repo_id,
image_logs=image_logs,
base_model=args.pretrained_model_name_or_path,
repo_folder=args.output_dir,
)
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
Expand Down