Skip to content

Execution of example from the Using the evaluator docs fails due to unspecified tokenizer #594

Open
@jpodivin

Description

@jpodivin

Instead of calculating metrics, the first example of evaluation[1] fails since the tokenizer isn't provided nor inferred.

Exception: Impossible to guess which tokenizer to use. Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer.

To replicate, simply try to execute following:

from datasets import load_dataset
from evaluate import evaluator
from transformers import AutoModelForSequenceClassification, pipeline

data = load_dataset("imdb", split="test").shuffle(seed=42).select(range(1000))
task_evaluator = evaluator("text-classification")

# 1. Pass a model name or path
eval_results = task_evaluator.compute(
    model_or_pipeline="lvwerra/distilbert-imdb",
    data=data,
    label_mapping={"NEGATIVE": 0, "POSITIVE": 1}
)

# 2. Pass an instantiated model
model = AutoModelForSequenceClassification.from_pretrained("lvwerra/distilbert-imdb")

eval_results = task_evaluator.compute(
    model_or_pipeline=model,
    data=data,
    label_mapping={"NEGATIVE": 0, "POSITIVE": 1}
)

evaluate===0.4.1

[1]https://huggingface.co/docs/evaluate/base_evaluator

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions