Skip to content
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 1 addition & 8 deletions tests/models/albert/test_modeling_albert.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,10 @@
import unittest

from packaging import version
from parameterized import parameterized

from transformers import AlbertConfig, AutoTokenizer, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_sdpa, slow, torch_device
from transformers.testing_utils import require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Expand Down Expand Up @@ -289,12 +288,6 @@ def setUp(self):
self.model_tester = AlbertModelTester(self)
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)

@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@require_torch_sdpa
@unittest.skip("Albert requires `head_mask` which is currently not done in this test.")
def test_eager_matches_sdpa_inference(self):
pass

def test_config(self):
self.config_tester.run_common_tests()

Expand Down
5 changes: 0 additions & 5 deletions tests/models/aya_vision/test_modeling_aya_vision.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,11 +256,6 @@ def test_model_outputs_equivalence(self, **kwargs):
def test_sdpa_can_dispatch_non_composite_models(self):
pass

@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_inference(self):
pass

@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_generate(self):
pass
Expand Down
197 changes: 2 additions & 195 deletions tests/models/beit/test_modeling_beit.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,35 +14,28 @@
# limitations under the License.
"""Testing suite for the PyTorch BEiT model."""

import inspect
import tempfile
import unittest

import numpy as np
from datasets import load_dataset
from packaging import version
from parameterized import parameterized

from transformers import BeitConfig
from transformers.testing_utils import (
require_torch,
require_torch_multi_gpu,
require_torch_sdpa,
require_vision,
slow,
torch_device,
)
from transformers.utils import (
cached_property,
is_torch_available,
is_torch_bf16_available_on_device,
is_torch_fp16_available_on_device,
is_vision_available,
)

from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, sdpa_kernel
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


Expand Down Expand Up @@ -119,6 +112,7 @@ def __init__(
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
self.mask_length = self.seq_length - 1
self.num_masks = int(mask_ratio * self.seq_length)
self.attn_implementation = attn_implementation

Expand Down Expand Up @@ -414,193 +408,6 @@ def test_model_from_pretrained(self):
model = BeitModel.from_pretrained(model_name)
self.assertIsNotNone(model)

@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@require_torch_sdpa
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
# The common test modifies the num_hidden_layers to be 1. However, for Beit we want to
# avoid that because the num_hidden_layers is generally assumed to be 4. Also, the code
# related to attention masks in the original common tests is not required as the Beit
# model does not handle attention masks. Furthermore, some extra code like modifying
# the norm layers eps values for specialized configs and checking for the 'noise'
# has been omitted to simply the test.
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")

if not self.all_model_classes[0]._supports_sdpa:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
self.skipTest(
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
)

# Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
if torch_dtype == "float16":
torch_dtype = torch.float16
elif torch_dtype == "bfloat16":
torch_dtype = torch.bfloat16
elif torch_dtype == "float32":
torch_dtype = torch.float32

atols = {
("cpu", False, torch.float32): 1e-6,
("cpu", False, torch.float16): 5e-3,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-6,
("cpu", True, torch.float16): 5e-3,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-6,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-6,
("cuda", True, torch.bfloat16): 1e-2,
("cuda", True, torch.float16): 5e-3,
}
rtols = {
("cpu", False, torch.float32): 1e-4,
("cpu", False, torch.float16): 5e-3,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-4,
("cpu", True, torch.float16): 5e-3,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-4,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-4,
("cuda", True, torch.bfloat16): 3e-2,
("cuda", True, torch.float16): 5e-3,
}

def get_mean_reldiff(failcase, x, ref, atol, rtol):
return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

config.rms_norm_eps = 1.0
config.layer_norm_eps = 1.0
config.norm_eps = 1.0
config.norm_epsilon = 1.0
config.layer_norm_epsilon = 1.0

model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype, use_mask_token=True)
model_sdpa = model_sdpa.eval().to(torch_device, dtype=torch_dtype)

model_eager = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch_dtype,
attn_implementation="eager",
use_mask_token=True,
)
model_eager = model_eager.eval().to(torch_device, dtype=torch_dtype)

# Another way to make sure norm layers have desired epsilon. (Some models don't set it from its config.)
for x in model_eager.modules():
if isinstance(x, (nn.LayerNorm, nn.GroupNorm)):
x.eps = 1.0
for x in model_sdpa.modules():
if isinstance(x, (nn.LayerNorm, nn.GroupNorm)):
x.eps = 1.0

# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
# but it would be nicer to have an efficient way to use parameterized.expand
fail_cases = []
for padding_side in ["left", "right"]:
for use_mask in [False, True]:
for output_attentions in [True, False]:
can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
if not (self.has_attentions and can_output_attn) and output_attentions:
continue
# TODO: if we can also check with `batch_size=1` without being flaky?
for batch_size in [7]:
dummy_input = inputs_dict[model.main_input_name]

if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
dummy_input = dummy_input.to(torch_dtype)

dummy_input = dummy_input[:batch_size]
for enable_kernels in [False, True]:
failcase = f"padding_side={padding_side}, use_mask={use_mask}, enable_kernels={enable_kernels}"
processed_inputs = {
model.main_input_name: dummy_input,
"output_hidden_states": True,
}

if (
self.has_attentions
and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
):
processed_inputs["output_attentions"] = output_attentions

if "bool_masked_pos" in inspect.signature(model_eager.forward).parameters:
dummy_mask = torch.ones((self.model_tester.num_masks,))
mask_length = self.model_tester.seq_length - 1 - dummy_mask.size(0)
dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)

with torch.no_grad():
with sdpa_kernel(
enable_flash=enable_kernels,
enable_math=True,
enable_mem_efficient=enable_kernels,
):
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
outputs_eager = model_eager(**prepared_inputs)
outputs_sdpa = model_sdpa(**prepared_inputs)

logits_eager = outputs_eager.hidden_states[-1]
logits_sdpa = outputs_sdpa.hidden_states[-1]
if torch_device in ["cpu", "cuda"]:
atol = atols[torch_device, enable_kernels, torch_dtype]
rtol = rtols[torch_device, enable_kernels, torch_dtype]
elif torch_device == "xpu":
# As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
# which is implemented on PyTorch level using aten operators and is
# device agnostic with respect to implementation of each aten operator.
atol = atols["cuda", False, torch_dtype]
rtol = rtols["cuda", False, torch_dtype]
else:
atol = 1e-7
rtol = 1e-4

# Masked tokens output slightly deviates - we don't mind that.
if use_mask:
_logits_sdpa = torch.zeros_like(input=logits_sdpa)
_logits_eager = torch.zeros_like(input=logits_eager)

_logits_sdpa[:-1] = logits_sdpa[:-1]
_logits_eager[:-1] = logits_eager[:-1]

if padding_side == "left":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, 2:]
_logits_eager[-1:, 2:] = logits_eager[-1:, 2:]

elif padding_side == "right":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, :-2]
_logits_eager[-1:, 2:] = logits_eager[-1:, :-2]

logits_sdpa = _logits_sdpa
logits_eager = _logits_eager

results = [
torch.allclose(_logits_sdpa, _logits_eager, atol=atol, rtol=rtol)
for (_logits_sdpa, _logits_eager) in zip(logits_sdpa, logits_eager)
]
# If 80% batch elements have matched results, it's fine
if np.mean(results) < 0.8:
fail_cases.append(
get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
)

self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))


# We will verify our results on an image of cute cats
def prepare_img():
Expand Down
5 changes: 0 additions & 5 deletions tests/models/cohere2/test_modeling_cohere2.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,11 +76,6 @@ def test_model_outputs_equivalence(self, **kwargs):
def test_sdpa_can_dispatch_non_composite_models(self):
pass

@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_inference(self):
pass

@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_generate(self):
pass
Expand Down
10 changes: 0 additions & 10 deletions tests/models/colpali/test_modeling_colpali.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@

import torch
from datasets import load_dataset
from parameterized import parameterized

from tests.test_configuration_common import ConfigTester
from tests.test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
Expand All @@ -32,7 +31,6 @@
from transformers.models.colpali.processing_colpali import ColPaliProcessor
from transformers.testing_utils import (
require_torch,
require_torch_sdpa,
require_vision,
slow,
torch_device,
Expand Down Expand Up @@ -271,14 +269,6 @@ def test_training_gradient_checkpointing_use_reentrant(self):
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass

@require_torch_sdpa
@slow
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
self.skipTest(
"Due to custom causal mask, there is a slightly too big difference between eager and sdpa in bfloat16."
)

@unittest.skip(
reason="From PaliGemma: Some undefined behavior encountered with test versions of this model. Skip for now."
)
Expand Down
Loading