-
Notifications
You must be signed in to change notification settings - Fork 253
Single-controller LoRA RL fine-tuning with vLLM #735
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,237 @@ | ||
| import os | ||
| import sys | ||
|
|
||
| from areal.api.alloc_mode import AllocationMode | ||
| from areal.api.cli_args import GRPOConfig, SGLangConfig, load_expr_config, vLLMConfig | ||
| from areal.api.io_struct import FinetuneSpec, StepInfo, WeightUpdateMeta | ||
| from areal.controller.rollout_controller import RolloutController | ||
| from areal.controller.train_controller import TrainController | ||
| from areal.dataset import get_custom_dataset | ||
| from areal.engine.ppo.actor import FSDPPPOActor | ||
| from areal.engine.sglang_remote import RemoteSGLangEngine | ||
| from areal.engine.vllm_remote import RemotevLLMEngine | ||
| from areal.scheduler.local import LocalScheduler | ||
| from areal.utils import stats_tracker | ||
| from areal.utils.data import ( | ||
| cycle_dataloader, | ||
| ) | ||
| from areal.utils.dataloader import create_dataloader | ||
| from areal.utils.device import log_gpu_stats | ||
| from areal.utils.evaluator import Evaluator | ||
| from areal.utils.hf_utils import load_hf_tokenizer | ||
| from areal.utils.recover import RecoverHandler | ||
| from areal.utils.saver import Saver | ||
| from areal.utils.stats_logger import StatsLogger | ||
|
|
||
|
|
||
| def main(args): | ||
| config, _ = load_expr_config(args, GRPOConfig) | ||
| config: GRPOConfig | ||
|
|
||
| tokenizer = load_hf_tokenizer(config.tokenizer_path) | ||
|
|
||
| # Create dataset and dataloaders | ||
| train_dataset = get_custom_dataset( | ||
| split="train", dataset_config=config.train_dataset, tokenizer=tokenizer | ||
| ) | ||
|
|
||
| train_dataloader = create_dataloader( | ||
| train_dataset, | ||
| rank=0, | ||
| world_size=1, | ||
| dataset_config=config.train_dataset, | ||
| ) | ||
|
|
||
| ft_spec = FinetuneSpec( | ||
| total_train_epochs=config.total_train_epochs, | ||
| dataset_size=len(train_dataloader) * config.train_dataset.batch_size, | ||
| train_batch_size=config.train_dataset.batch_size, | ||
| ) | ||
|
|
||
| # Initialize scheduler | ||
| scheduler = LocalScheduler(exp_config=config) | ||
|
|
||
| # Initialize train controller | ||
| allocation_mode = AllocationMode.from_str(config.allocation_mode) | ||
| actor = TrainController(FSDPPPOActor, config=config.actor, scheduler=scheduler) | ||
| actor.initialize( | ||
| role="actor", alloc_mode=allocation_mode, ft_spec=ft_spec, addr=None | ||
| ) | ||
|
|
||
| # Initialize inference engine | ||
|
|
||
| if allocation_mode.gen_backend == "sglang": | ||
| engine_class = RemoteSGLangEngine | ||
| server_args = SGLangConfig.build_args( | ||
| sglang_config=config.sglang, | ||
| tp_size=allocation_mode.gen.tp_size, | ||
| base_gpu_id=0, | ||
| ) | ||
| elif allocation_mode.gen_backend == "vllm": | ||
| engine_class = RemotevLLMEngine | ||
| server_args = vLLMConfig.build_args( | ||
| vllm_config=config.vllm, | ||
| tp_size=allocation_mode.gen.tp_size, | ||
| pp_size=allocation_mode.gen.pp_size, | ||
| ) | ||
| else: | ||
| raise ValueError(f"Unsupported gen_backend: '{allocation_mode.gen_backend}'") | ||
|
|
||
| rollout = RolloutController( | ||
| engine_class, config=config.rollout, scheduler=scheduler | ||
| ) | ||
| rollout.initialize( | ||
| role="rollout", | ||
| alloc_mode=allocation_mode, | ||
| server_args=server_args, | ||
| ) | ||
|
|
||
| if config.actor.weight_update_mode == "disk": | ||
| weight_update_meta = WeightUpdateMeta.from_disk( | ||
| experiment_name=config.saver.experiment_name, | ||
| trial_name=config.saver.trial_name, | ||
| file_root=config.saver.fileroot, | ||
| use_lora=config.actor.use_lora, | ||
| lora_name=config.gconfig.lora_name, | ||
| lora_int_id=1, | ||
| base_model_name=config.actor.path, | ||
| ) | ||
| elif config.actor.weight_update_mode == "xccl": | ||
| weight_update_meta = WeightUpdateMeta.from_fsdp_xccl( | ||
| allocation_mode, | ||
| use_lora=config.actor.use_lora, | ||
| lora_name=config.gconfig.lora_name, | ||
| lora_int_id=1, # hard coded for the single lora example | ||
| base_model_name=config.actor.path, | ||
| ) | ||
|
|
||
| actor.connect_engine(rollout, weight_update_meta) | ||
|
|
||
| ref = None | ||
| if config.actor.kl_ctl > 0 and config.ref is not None: | ||
| ref = TrainController(FSDPPPOActor, config=config.ref, scheduler=scheduler) | ||
| ref.initialize( | ||
| role="ref", alloc_mode=allocation_mode, ft_spec=ft_spec, addr=None | ||
| ) | ||
|
|
||
| # Run training. | ||
| saver = Saver(config.saver, ft_spec) | ||
| stats_logger = StatsLogger(config, ft_spec) | ||
| evaluator = Evaluator(config.evaluator, ft_spec) | ||
|
|
||
| recover_handler = RecoverHandler(config.recover, ft_spec) | ||
|
|
||
| try: | ||
| recover_info = recover_handler.load( | ||
| actor, | ||
| saver, | ||
| evaluator, | ||
| stats_logger, | ||
| train_dataloader, | ||
| inference_engine=rollout, | ||
| weight_update_meta=weight_update_meta, | ||
| ) | ||
| start_step = ( | ||
| recover_info.last_step_info.next().global_step | ||
| if recover_info is not None | ||
| else 0 | ||
| ) | ||
|
|
||
| total_epochs = config.total_train_epochs | ||
| steps_per_epoch = len(train_dataloader) | ||
| max_steps = total_epochs * steps_per_epoch | ||
|
|
||
| data_generator = cycle_dataloader(train_dataloader) | ||
| for global_step in range(start_step, max_steps): | ||
| epoch = global_step // steps_per_epoch | ||
| step = global_step % steps_per_epoch | ||
| step_info = StepInfo( | ||
| global_step=global_step, | ||
| epoch=epoch, | ||
| epoch_step=step, | ||
| steps_per_epoch=steps_per_epoch, | ||
| ) | ||
|
|
||
| with stats_tracker.record_timing("rollout"): | ||
| workflow_kwargs = dict( | ||
| reward_fn="areal.reward.gsm8k.gsm8k_reward_fn", | ||
| gconfig=config.gconfig, | ||
| tokenizer=config.tokenizer_path, | ||
| enable_thinking=False, | ||
| dump_dir=os.path.join( | ||
| StatsLogger.get_log_path(config.stats_logger), | ||
| "generated", | ||
| ), | ||
| ) | ||
| if config.rollout.max_head_offpolicyness > 0: | ||
| batch = actor.prepare_batch( | ||
| train_dataloader, | ||
| workflow="areal.workflow.rlvr.RLVRWorkflow", | ||
| workflow_kwargs=workflow_kwargs, | ||
| ) | ||
| else: | ||
| batch = actor.rollout_batch( | ||
| next(data_generator), | ||
| workflow="areal.workflow.rlvr.RLVRWorkflow", | ||
| workflow_kwargs=workflow_kwargs, | ||
| ) | ||
|
Comment on lines
+166
to
+177
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We should only use |
||
|
|
||
| if config.actor.recompute_logprob or config.actor.use_decoupled_loss: | ||
| with stats_tracker.record_timing("recompute_logp"): | ||
| logp = actor.compute_logp(batch) | ||
| batch["prox_logp"] = logp | ||
| log_gpu_stats("recompute logp") | ||
|
|
||
| if ref is not None: | ||
| with stats_tracker.record_timing("ref_logp"): | ||
| batch["ref_logp"] = ref.compute_logp(batch) | ||
| log_gpu_stats("ref logp") | ||
|
|
||
| with stats_tracker.record_timing("compute_advantage"): | ||
| batch = actor.compute_advantages(batch) | ||
| log_gpu_stats("compute advantages") | ||
|
|
||
| with stats_tracker.record_timing("train_step"): | ||
| actor.ppo_update(batch) | ||
| actor.step_lr_scheduler() | ||
| log_gpu_stats("ppo update") | ||
|
|
||
| # pause inference for updating weights, save, and evaluation | ||
| rollout.pause() | ||
|
|
||
| with stats_tracker.record_timing("update_weights"): | ||
| actor.update_weights(weight_update_meta) | ||
|
|
||
| actor.set_version(global_step + 1) | ||
| rollout.set_version(global_step + 1) | ||
|
|
||
| with stats_tracker.record_timing("save"): | ||
| saver.save(actor, epoch, step, global_step, tokenizer=tokenizer) | ||
|
|
||
| with stats_tracker.record_timing("checkpoint_for_recover"): | ||
| recover_handler.dump( | ||
| actor, | ||
| step_info, | ||
| saver, | ||
| evaluator, | ||
| stats_logger, | ||
| train_dataloader, | ||
| tokenizer=tokenizer, | ||
| ) | ||
|
Comment on lines
+208
to
+220
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The single-controller training script has been slightly changed. It now has an additional FYI we are working to merging the scripts into trainers now. |
||
|
|
||
| # Upload statistics to the logger (e.g., wandb) | ||
| stats_logger.commit(epoch, step, global_step, actor.export_stats()) | ||
gursimar marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| # Resume rollout | ||
| rollout.resume() | ||
|
|
||
| finally: | ||
| stats_logger.close() | ||
| rollout.destroy() | ||
| if ref is not None: | ||
| ref.destroy() | ||
| actor.destroy() | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main(sys.argv[1:]) | ||
Uh oh!
There was an error while loading. Please reload this page.