Skip to content

issacj-17/Speed-Run

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Julius Baer: Agentic AI AML Platform

A comprehensive AI-powered platform for real-time Anti-Money Laundering (AML) monitoring and document corroboration, built for Julius Baer.

🎯 Project Overview

This platform integrates two critical AML capabilities:

  1. Real-Time AML Monitoring - Monitor transactions in real-time, generate risk-based alerts, and provide actionable insights
  2. Document & Image Corroboration - AI-powered document forensics to detect tampering, inconsistencies, and suspicious patterns

✨ Features

Dashboard

  • Real-time KPI metrics (Active Alerts, Critical Cases, Resolution Times)
  • Risk level distribution visualization
  • Transaction volume trends
  • Comprehensive alert triage queue

Investigation Cockpit

  • Detailed transaction analysis with risk scoring
  • AI-powered document forensics with issue detection
  • Multi-agent AI analysis system:
    • Regulatory Watcher: Monitors compliance with FINMA regulations
    • Transaction Analyst: Analyzes patterns and anomalies
    • Document Forensics: Detects digital tampering and inconsistencies
  • Historical transaction context
  • Complete audit trail

πŸ—οΈ Architecture

julius-baer-aml/
β”œβ”€β”€ frontend/          # Next.js 14 + TypeScript + TailwindCSS
β”‚   β”œβ”€β”€ app/          # Pages and layouts
β”‚   β”œβ”€β”€ components/   # Reusable UI components
β”‚   β”œβ”€β”€ lib/          # Utilities and API client
β”‚   └── types/        # TypeScript definitions
β”‚
β”œβ”€β”€ backend/          # FastAPI + Python
β”‚   β”œβ”€β”€ api/         # REST API endpoints
β”‚   β”œβ”€β”€ models/      # Pydantic schemas
β”‚   β”œβ”€β”€ services/    # Business logic
β”‚   └── agents/      # AI agents (future)
β”‚
└── README.md        # This file

πŸš€ Quick Start

Prerequisites

  • Node.js 18+ (for frontend)
  • Python 3.9+ (for backend)
  • npm or yarn (for frontend packages)
  • pip (for Python packages)

Option 1: Run Frontend Only (Recommended to Start)

The frontend works standalone with mock data - perfect for UI testing!

# Navigate to frontend
cd frontend

# Install dependencies
npm install

# Start development server
npm run dev

# Open browser to http://localhost:3000

Option 2: Run Backend Only

The backend provides REST APIs with mock data - no database required!

# Navigate to backend
cd backend

# Create virtual environment
python -m venv venv

# Activate virtual environment
# Windows:
venv\Scripts\activate
# Mac/Linux:
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

# Start server
python main.py

# API available at http://localhost:8000
# Docs at http://localhost:8000/docs

Option 3: Run Full Stack

Run both frontend and backend together:

# Terminal 1 - Backend
cd backend
python -m venv venv
source venv/bin/activate  # or venv\Scripts\activate on Windows
pip install -r requirements.txt
python main.py

# Terminal 2 - Frontend
cd frontend
npm install
npm run dev

Then open http://localhost:3000 in your browser!

πŸ“± Screenshots & Pages

Main Dashboard (/)

  • Overview of all active AML alerts
  • KPI cards showing critical metrics
  • Interactive charts for risk visualization
  • Alert triage queue with investigation actions

Investigation Cockpit (/investigation/[alertId])

  • Detailed transaction information
  • Document viewer with forensics analysis
  • AI agent findings from multiple specialized agents
  • Historical transaction context
  • Remediation and audit trail actions

πŸ› οΈ Technology Stack

Frontend

  • Next.js 14 - React framework with App Router
  • TypeScript - Type-safe development
  • TailwindCSS - Utility-first styling
  • shadcn/ui - High-quality React components
  • Recharts - Data visualization
  • React Query - Data fetching and caching

Backend

  • FastAPI - High-performance Python API framework
  • Pydantic - Data validation
  • Uvicorn - ASGI server
  • Mock Data - In-memory data (MongoDB ready)
  • Simulated AI - Mock agents (Groq API ready)

πŸ“š Documentation

πŸ”§ Current Status

βœ… Completed

  • Frontend UI with all pages and components
  • Backend API with all endpoints
  • Mock data for development and testing
  • Complete documentation
  • CORS configuration for integration

🚧 Ready to Add (When Needed)

  • MongoDB integration (currently using mock data)
  • Groq API integration (currently using simulated AI)
  • WebSocket for real-time updates
  • User authentication and authorization
  • Production deployment configuration

🎨 Design Highlights

  • Professional banking aesthetic matching Julius Baer's brand
  • Responsive design for desktop and tablet
  • Intuitive navigation between dashboard and investigation views
  • Color-coded risk levels and priorities
  • Interactive charts and data visualizations

πŸ” Security Notes

This is a development version with:

  • Mock data (no real customer information)
  • No authentication (add before production)
  • CORS enabled for localhost (restrict in production)

πŸ“ˆ Next Steps

Phase 1: Database Integration

# Install MongoDB locally or use MongoDB Atlas
# Update backend/.env with connection string
# Uncomment MongoDB code in backend/services/database.py

Phase 2: AI Integration

# Get Groq API key from https://groq.com
# Add to backend/.env: GROQ_API_KEY=your_key
# Implement real agents in backend/agents/

Phase 3: Real-Time Features

# Add WebSocket support
# Implement live alert notifications
# Add real-time dashboard updates

Phase 4: Production Deployment

# Add authentication (JWT, OAuth)
# Configure production environment variables
# Set up monitoring and logging
# Deploy to cloud (AWS, Azure, GCP)

πŸ§ͺ Testing

Test Frontend

cd frontend
npm run dev
# Visit http://localhost:3000
# Click through dashboard and investigation pages

Test Backend API

cd backend
python main.py
# Visit http://localhost:8000/docs
# Try the interactive API documentation

Test Integration

# Start both frontend and backend
# Frontend will automatically connect to backend
# Test full flow: Dashboard β†’ Click "Investigate" β†’ View details

πŸ“ Environment Variables

Frontend (.env.local)

NEXT_PUBLIC_API_URL=http://localhost:8000
NEXT_PUBLIC_WS_URL=ws://localhost:8000

Backend (.env)

CORS_ORIGINS=http://localhost:3000
# Future additions:
# MONGODB_URL=mongodb://localhost:27017
# GROQ_API_KEY=your_key_here

🀝 Contributing

This is a proprietary project for Julius Baer. For questions or support, contact the development team.

πŸ“„ License

Proprietary - Julius Baer


Built with ❀️ for Julius Baer's AML Compliance Team

About

SingHacks'25

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TypeScript 58.7%
  • Python 40.3%
  • Other 1.0%