Skip to content

Optimizer wrapper for learning rate multipliers #7912

Closed
@KiddoZhu

Description

@KiddoZhu

I would like to introduce an elegant API for different learning rates in different layers. It will be an optimizer wrapper going like this

input = Input(input_shape)
conv = Conv2D(filters, strides=strides, padding=padding)
x = conv(input)
x = Dense(num_class, activation="softmax")(x)
model = Model(input, x)

MultiLRAdam = MultiLR(Adam)
lr_multiplier = {conv.kernel: 0.5, conv.bias: 0.1}
model.compile(loss="categorical_crossentropy", optimizer=MultiLRAdam(lr=1e-4, lr_multiplier=lr_multiplier))

Details can be found in this proposal.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions