Closed
Description
I have been doing experiments with DAdaptation. After tinkering a bit I found a very good setup and obtained a really good output model out of it.
The model seems to work fine when used, both with the standard webui LoRA implementation and your own extension.
But when loaded, with both implementations, it'll give a strange warning:
LoRA model megamedi_last(b2d96e8fff26) loaded: _IncompatibleKeys(missing_keys=[], unexpected_keys=['lora_unet_input_blocks_1_0_emb_layers_1.alpha', 'lora_unet_input_blocks_1_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_1_0_emb_layers_1.lora_up.weight', 'lora_unet_input_blocks_2_0_emb_layers_1.alpha', 'lora_unet_input_blocks_2_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_2_0_emb_layers_1.lora_up.weight', 'lora_unet_input_blocks_4_0_skip_connection.alpha', 'lora_unet_input_blocks_4_0_skip_connection.lora_down.weight', 'lora_unet_input_blocks_4_0_skip_connection.lora_up.weight', 'lora_unet_input_blocks_4_0_emb_layers_1.alpha', 'lora_unet_input_blocks_4_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_4_0_emb_layers_1.lora_up.weight', 'lora_unet_input_blocks_5_0_emb_layers_1.alpha', 'lora_unet_input_blocks_5_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_5_0_emb_layers_1.lora_up.weight', 'lora_unet_input_blocks_7_0_skip_connection.alpha', 'lora_unet_input_blocks_7_0_skip_connection.lora_down.weight', 'lora_unet_input_blocks_7_0_skip_connection.lora_up.weight', 'lora_unet_input_blocks_7_0_emb_layers_1.alpha', 'lora_unet_input_blocks_7_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_7_0_emb_layers_1.lora_up.weight', 'lora_unet_input_blocks_8_0_emb_layers_1.alpha', 'lora_unet_input_blocks_8_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_8_0_emb_layers_1.lora_up.weight', 'lora_unet_input_blocks_10_0_emb_layers_1.alpha', 'lora_unet_input_blocks_10_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_10_0_emb_layers_1.lora_up.weight', 'lora_unet_input_blocks_11_0_emb_layers_1.alpha', 'lora_unet_input_blocks_11_0_emb_layers_1.lora_down.weight', 'lora_unet_input_blocks_11_0_emb_layers_1.lora_up.weight', 'lora_unet_middle_block_0_emb_layers_1.alpha', 'lora_unet_middle_block_0_emb_layers_1.lora_down.weight', 'lora_unet_middle_block_0_emb_layers_1.lora_up.weight', 'lora_unet_middle_block_2_emb_layers_1.alpha', 'lora_unet_middle_block_2_emb_layers_1.lora_down.weight', 'lora_unet_middle_block_2_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_0_0_skip_connection.alpha', 'lora_unet_output_blocks_0_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_0_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_0_0_emb_layers_1.alpha', 'lora_unet_output_blocks_0_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_0_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_1_0_skip_connection.alpha', 'lora_unet_output_blocks_1_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_1_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_1_0_emb_layers_1.alpha', 'lora_unet_output_blocks_1_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_1_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_2_0_skip_connection.alpha', 'lora_unet_output_blocks_2_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_2_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_2_0_emb_layers_1.alpha', 'lora_unet_output_blocks_2_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_2_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_3_0_skip_connection.alpha', 'lora_unet_output_blocks_3_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_3_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_3_0_emb_layers_1.alpha', 'lora_unet_output_blocks_3_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_3_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_4_0_skip_connection.alpha', 'lora_unet_output_blocks_4_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_4_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_4_0_emb_layers_1.alpha', 'lora_unet_output_blocks_4_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_4_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_5_0_skip_connection.alpha', 'lora_unet_output_blocks_5_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_5_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_5_0_emb_layers_1.alpha', 'lora_unet_output_blocks_5_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_5_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_6_0_skip_connection.alpha', 'lora_unet_output_blocks_6_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_6_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_6_0_emb_layers_1.alpha', 'lora_unet_output_blocks_6_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_6_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_7_0_skip_connection.alpha', 'lora_unet_output_blocks_7_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_7_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_7_0_emb_layers_1.alpha', 'lora_unet_output_blocks_7_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_7_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_8_0_skip_connection.alpha', 'lora_unet_output_blocks_8_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_8_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_8_0_emb_layers_1.alpha', 'lora_unet_output_blocks_8_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_8_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_9_0_skip_connection.alpha', 'lora_unet_output_blocks_9_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_9_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_9_0_emb_layers_1.alpha', 'lora_unet_output_blocks_9_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_9_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_10_0_skip_connection.alpha', 'lora_unet_output_blocks_10_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_10_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_10_0_emb_layers_1.alpha', 'lora_unet_output_blocks_10_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_10_0_emb_layers_1.lora_up.weight', 'lora_unet_output_blocks_11_0_skip_connection.alpha', 'lora_unet_output_blocks_11_0_skip_connection.lora_down.weight', 'lora_unet_output_blocks_11_0_skip_connection.lora_up.weight', 'lora_unet_output_blocks_11_0_emb_layers_1.alpha', 'lora_unet_output_blocks_11_0_emb_layers_1.lora_down.weight', 'lora_unet_output_blocks_11_0_emb_layers_1.lora_up.weight'])
setting (or sd model) changed. new networks created.
The webui implementation shows a similar warning as well.
As demonstrated by the image, the training worked, and very well, so this is just noise about extra blocks?
Should I be concerned about it? Did something fail in the training? I see no visible warnings or errors in the training console.
I'm using your scripts at commit dd05d99 and the config of this training is as follows:
{
ss_batch_size_per_device: "1",
ss_bucket_info: "{"buckets": {"0": {"resolution": [320, 768], "count": 6}, "1": {"resolution": [448, 704], "count": 26}, "2": {"resolution": [512, 640], "count": 28}, "3": {"resolution": [576, 576], "count": 22}, "4": {"resolution": [704, 448], "count": 2}}, "mean_img_ar_error": 0.04893075256764087}",
ss_bucket_no_upscale: "False",
ss_cache_latents: "True",
ss_caption_dropout_every_n_epochs: "0",
ss_caption_dropout_rate: "0.0",
ss_caption_tag_dropout_rate: "0.0",
ss_clip_skip: "2",
ss_color_aug: "False",
ss_enable_bucket: "True",
ss_epoch: "20",
ss_face_crop_aug_range: "None",
ss_flip_aug: "True",
ss_full_fp16: "False",
ss_gradient_accumulation_steps: "1",
ss_gradient_checkpointing: "False",
ss_keep_tokens: "1",
ss_learning_rate: "1.0",
ss_lowram: "False",
ss_lr_scheduler: "constant",
ss_lr_warmup_steps: "5",
ss_max_bucket_reso: "768",
ss_max_grad_norm: "1.0",
ss_max_token_length: "225",
ss_max_train_steps: "1680",
ss_min_bucket_reso: "320",
ss_mixed_precision: "fp16",
ss_network_alpha: "64.0",
ss_network_dim: "128",
ss_network_module: "networks.lora",
ss_new_sd_model_hash: "89d59c3dde4c56c6d5c41da34cc55ce479d93b4007046980934b14db71bdb2a8",
ss_noise_offset: "0.06",
ss_num_batches_per_epoch: "84",
ss_num_epochs: "20",
ss_num_reg_images: "0",
ss_num_train_images: "84",
ss_optimizer: "dadaptation.dadapt_adam.DAdaptAdam(decouple=True,weight_decay=0.01)",
ss_output_name: "megamedi_last",
ss_prior_loss_weight: "1.0",
ss_random_crop: "False",
ss_reg_dataset_dirs: "{}",
ss_resolution: "(576, 576)",
ss_sd_model_hash: "925997e9",
ss_sd_model_name: "animefinal-full-pruned.ckpt",
ss_sd_scripts_commit_hash: "dd05d99efd2f83efd4a0d26430dccdcac4f29480",
ss_seed: "420",
ss_session_id: "31633648",
ss_shuffle_caption: "True",
ss_text_encoder_lr: "0.5",
ss_total_batch_size: "1",
ss_training_comment: "LORA:megamedi",
ss_training_finished_at: "1678416179.0352871",
ss_training_started_at: "1678412720.0291808",
ss_unet_lr: "1.0",
ss_v2: "False"
}
Metadata
Metadata
Assignees
Labels
No labels