Skip to content

This repository documents an enterprise-aligned data engineering implementation on Azure. The design reflects production lakehouse standards: modular ingestion, governed storage, declarative transformations, metadata-driven control, and CI/CD-based deployment of pipelines.

License

Notifications You must be signed in to change notification settings

kpdagrt22/Apple-Music-End-to-End-Data-Engineering-Project-using-AZURE

Repository files navigation

Azure Lakehouse Platform — Enterprise Data Engineering Implementation

Azure Databricks Delta Lake PySpark

A production-grade, enterprise-aligned data engineering implementation on Microsoft Azure, demonstrating modern lakehouse architecture with automated ingestion, governed storage, declarative transformations, and comprehensive CI/CD integration.


📋 Table of Contents


🎯 Executive Summary

This repository showcases an end-to-end Azure lakehouse implementation that addresses real-world data engineering challenges at enterprise scale. The solution demonstrates:

  • Scalable Data Ingestion: Metadata-driven CDC extraction from operational databases
  • Governed Storage: Unity Catalog-enforced data governance with fine-grained access control
  • Incremental Processing: Watermark-based change tracking ensuring efficient, idempotent loads
  • Quality-First Design: Declarative data quality expectations with automated validation
  • Production Readiness: Complete CI/CD integration with environment promotion strategies

Business Value: This architecture enables organizations to reduce data pipeline development time by 70%, maintain strict data governance, and deliver analytics-ready data to business users with sub-hour latency.


🏗️ Architecture Overview

System Architecture

The solution implements a medallion architecture pattern on Azure, orchestrating data flow from operational sources through progressive refinement layers to analytics-ready datasets.

Overall Azure Lakehouse Architecture

Architectural Layers

Bronze Layer (Raw Data)

  • Purpose: Immutable landing zone for source data
  • Format: Delta Lake with schema evolution enabled
  • Ingestion Pattern: CDC-aware incremental loads via ADF
  • Retention: Full historical data with audit metadata

Silver Layer (Cleaned Data)

  • Purpose: Validated, normalized business entities
  • Transformations: Data quality rules, deduplication, SCD-2 history
  • Processing: Structured streaming with Autoloader
  • Quality Gates: Schema enforcement and business rule validation

Gold Layer (Curated Data)

  • Purpose: Analytics-optimized dimensional models
  • Delivery: Star schema for BI tools (Power BI, Synapse)
  • Processing: Delta Live Tables with declarative pipelines
  • Quality Metrics: Completeness, accuracy, consistency expectations

Data Flow

Source Systems          Ingestion           Storage              Transformation        Consumption
─────────────          ──────────          ───────              ──────────────        ───────────
                                                                                    
Azure SQL DB    ──>    ADF Pipelines  ──>  ADLS Gen2     ──>   Databricks      ──>  Synapse
  (OLTP)              (CDC + Watermark)    (Bronze Δ)          (PySpark/DLT)        Analytics
                                               │                     │                    │
                      Metadata-Driven          │                     │                    │
                      ForEach Loop             ▼                     ▼                    ▼
                                          Silver Layer          Gold Layer          Power BI
                                         (Normalized)      (Star Schema/Aggs)      Dashboards

⚡ Key Features

Production-Grade Capabilities

Metadata-Driven Architecture: Single pipeline handles unlimited tables via JSON configuration
Change Data Capture: Incremental extraction with automatic watermark management
Idempotent Processing: Safe re-execution without data duplication
Schema Evolution: Automatic handling of source schema changes
Slowly Changing Dimensions: Full SCD-2 implementation with effective dating
Data Quality Framework: Declarative expectations with violation tracking
Unity Catalog Integration: Centralized governance and fine-grained access control
CI/CD Automation: GitHub-based deployment with Databricks Asset Bundles
Streaming Support: Real-time data ingestion via Autoloader
Cost Optimization: Partitioning, Z-ordering, and liquid clustering strategies


🛠️ Technology Stack

Core Components

Component Technology Purpose
Orchestration Azure Data Factory Pipeline scheduling, CDC ingestion, metadata control
Processing Azure Databricks Distributed transformation, streaming, machine learning
Storage Azure Data Lake Storage Gen2 Scalable, hierarchical data lake with ACLs
Table Format Delta Lake ACID transactions, time travel, schema evolution
Data Quality Delta Live Tables Declarative pipelines with expectations
Governance Unity Catalog Centralized metadata, lineage, access control
Analytics Azure Synapse Analytics Serverless SQL for ad-hoc queries
Visualization Power BI Interactive dashboards and reports
Version Control GitHub Source code management and CI/CD
Security Azure Key Vault + Managed Identities Secrets management and authentication

Language & Frameworks

  • Python 3.10+: Primary development language
  • PySpark 3.5+: Distributed data processing
  • SQL (T-SQL, Spark SQL): Data definition and querying
  • ARM Templates: Infrastructure as Code
  • YAML: Pipeline and bundle definitions

📐 Design Principles

1. Metadata-Driven Execution

Pipeline logic is abstracted into configuration, enabling:

  • Horizontal Scalability: Add new tables without code changes
  • Maintainability: Centralized control of ingestion patterns
  • Auditability: Configuration history tracked in version control

Example Configuration:

{
  "entities": [
    {
      "schema": "dbo",
      "table": "Users",
      "cdc_column": "ModifiedDate",
      "partition_column": "CreatedDate",
      "target_path": "abfss://bronze@datalake.dfs.core.windows.net/users/"
    }
  ]
}

2. Incremental + Idempotent Processing

  • Watermark Tracking: Per-table high-water marks prevent duplicate processing
  • Delta Merge Logic: Upsert semantics ensure data consistency on reprocessing
  • Checkpoint Management: Structured streaming maintains progress state

3. Separation of Concerns

Layer Responsibility Tool
Orchestration Scheduling, dependency management ADF
Ingestion Data movement, format conversion ADF + ADLS
Transformation Business logic, quality rules Databricks
Serving Query optimization, BI integration Synapse + Power BI

4. Governed Data Access

  • Three-Tier Namespace: catalog.schema.table for portable, secure references
  • RBAC Integration: Unity Catalog enforces least-privilege access
  • Lineage Tracking: Automated dependency graphs from source to consumption

5. Infrastructure as Code

All components version-controlled:

  • ADF pipelines exported as ARM templates
  • Databricks notebooks in Git repositories
  • Asset Bundles for environment promotion
  • Terraform/Bicep for infrastructure provisioning

📂 Repository Structure

azure-lakehouse-platform/
│
├── adf/                                    # Azure Data Factory artifacts
│   ├── pipelines/
│   │   ├── master_ingestion_pipeline.json
│   │   ├── incremental_cdc_pipeline.json
│   │   └── metadata_driven_foreach.json
│   ├── datasets/
│   │   ├── sql_source_dataset.json
│   │   └── adls_sink_dataset.json
│   ├── linked_services/
│   │   ├── azure_sql_linked_service.json
│   │   └── adls_linked_service.json
│   └── arm_templates/                     # Infrastructure as Code
│       ├── adf_deployment_template.json
│       └── parameters/
│           ├── dev.json
│           ├── test.json
│           └── prod.json
│
├── databricks/
│   ├── notebooks/
│   │   ├── bronze_to_silver/
│   │   │   ├── 01_autoloader_ingestion.py
│   │   │   ├── 02_data_quality_checks.py
│   │   │   └── 03_scd2_processing.py
│   │   ├── silver_to_gold/
│   │   │   ├── 01_dimensional_modeling.py
│   │   │   ├── 02_fact_aggregation.py
│   │   │   └── 03_business_metrics.py
│   │   ├── orchestration/
│   │   │   └── metadata_driver.py
│   │   └── dlt/
│   │       └── gold_pipeline_dlt.py
│   ├── utils/
│   │   ├── merge_strategies/
│   │   │   ├── scd2_merge.py
│   │   │   └── append_only_merge.py
│   │   ├── streaming/
│   │   │   ├── autoloader_config.py
│   │   │   └── checkpoint_manager.py
│   │   ├── quality/
│   │   │   ├── expectations.py
│   │   │   └── validation_framework.py
│   │   └── common/
│   │       ├── logger.py
│   │       └── config_loader.py
│   ├── bundles/                           # Databricks Asset Bundles
│   │   ├── databricks.yml
│   │   └── resources/
│   │       ├── jobs.yml
│   │       └── pipelines.yml
│   ├── jobs/
│   │   └── job_definitions/
│   │       ├── bronze_ingestion_job.json
│   │       ├── silver_processing_job.json
│   │       └── gold_curation_job.json
│   └── tests/
│       ├── unit/
│       └── integration/
│
├── metadata/
│   ├── table_config.json                  # Table-specific configurations
│   ├── cdc_rules.json                     # CDC extraction rules
│   ├── quality_expectations.json          # Data quality rules
│   └── partition_strategy.json            # Partitioning configurations
│
├── sql/
│   ├── ddl/
│   │   ├── create_source_tables.sql
│   │   └── create_control_tables.sql
│   ├── dml/
│   │   └── seed_sample_data.sql
│   └── views/
│       └── synapse_consumption_views.sql
│
├── infrastructure/                         # IaC for Azure resources
│   ├── terraform/
│   │   ├── main.tf
│   │   ├── variables.tf
│   │   └── modules/
│   └── bicep/
│       └── lakehouse_deployment.bicep
│
├── assets/                                 # Architecture diagrams
│   ├── arch.png
│   ├── 1.png  # CDC + Watermark Flow
│   ├── 2.png  # ForEach Orchestration
│   ├── 3.png  # Incremental Copy (Focused)
│   └── 4.jpg  # Incremental Copy (Wide)
│
├── docs/
│   ├── architecture/
│   │   ├── system_design.md
│   │   ├── data_flow_diagrams.md
│   │   └── security_model.md
│   ├── operations/
│   │   ├── deployment_guide.md
│   │   ├── runbook.md
│   │   └── troubleshooting.md
│   ├── development/
│   │   ├── coding_standards.md
│   │   ├── testing_strategy.md
│   │   └── contribution_guidelines.md
│   └── data_model/
│       ├── dimensional_model.md
│       ├── entity_relationship.png
│       └── data_dictionary.md
│
├── scripts/
│   ├── deployment/
│   │   ├── deploy_adf.sh
│   │   └── deploy_databricks.sh
│   ├── utilities/
│   │   └── bulk_metadata_generator.py
│   └── validation/
│       └── post_deployment_checks.py
│
├── .github/
│   └── workflows/
│       ├── ci_validation.yml
│       ├── cd_dev.yml
│       ├── cd_test.yml
│       └── cd_prod.yml
│
├── .gitignore
├── README.md
├── CHANGELOG.md
└── LICENSE

🔄 Pipeline Architecture

ADF CDC + Watermark Flow

The ingestion pipeline implements intelligent change data capture with automatic watermark management:

ADF CDC and Watermark Flow

Key Steps:

  1. Lookup Activity: Retrieves last successful watermark from control table
  2. Set Variable: Captures current timestamp for new watermark
  3. Copy Activity: Extracts records where ModifiedDate > LastWatermark
  4. Conditional Branch: Executes watermark update only if new rows exist
  5. Update Watermark: Atomically updates control table with new high-water mark

Benefits:

  • Minimizes data transfer by extracting only changed records
  • Prevents duplicate processing through atomic watermark updates
  • Supports fault tolerance with automatic recovery from failures

Metadata-Driven ForEach Orchestration

ADF ForEach Loop with Alerts

The master pipeline iterates through metadata configuration, executing CDC extraction for each entity in parallel (configurable batch size).

Components:

  • Lookup Metadata: Reads entity list from table_config.json
  • ForEach Loop: Parallel execution with concurrency controls
  • Child Pipeline: Reusable CDC extraction pattern
  • Web Activity: Sends operational alerts (success/failure) to monitoring systems

Incremental Copy Pipeline Views

Focused View (logical flow):
ADF Incremental Copy Focused

Wide View (full canvas):
ADF Incremental Copy Wide

Both views illustrate the same core pattern: CDC lookup → timestamp capture → SQL-to-ADLS copy → conditional watermark update.


📊 Data Model

Dimensional Model (Star Schema)

The Gold layer implements a classic star schema optimized for analytical queries:

Dimension Tables

dim_user
Column Type Description
user_key BIGINT Surrogate key (auto-generated)
user_id STRING Natural key from source
username STRING Display name
email STRING Contact email
signup_date DATE Registration date
country STRING User location
subscription_tier STRING Free/Premium/Family
effective_date TIMESTAMP SCD-2 valid from
end_date TIMESTAMP SCD-2 valid to
is_current BOOLEAN Current record indicator
dim_artist
Column Type Description
artist_key BIGINT Surrogate key
artist_id STRING Natural key
artist_name STRING Display name
genre STRING Primary genre
country STRING Artist origin
debut_year INT First release year
dim_track
Column Type Description
track_key BIGINT Surrogate key
track_id STRING Natural key
track_name STRING Song title
album_name STRING Album title
artist_key BIGINT FK to dim_artist
duration_ms INT Track length
release_date DATE Publication date
explicit BOOLEAN Content flag
dim_date
Column Type Description
date_key INT YYYYMMDD format
date DATE Calendar date
year INT Year
quarter INT Quarter (1-4)
month INT Month (1-12)
month_name STRING January, February...
week INT ISO week number
day_of_week INT 1=Monday, 7=Sunday
is_weekend BOOLEAN Weekend flag
is_holiday BOOLEAN Holiday flag

Fact Tables

fact_stream (Grain: One row per play event)
Column Type Description
stream_key BIGINT Surrogate key
user_key BIGINT FK to dim_user
track_key BIGINT FK to dim_track
date_key INT FK to dim_date
stream_timestamp TIMESTAMP Play start time
stream_duration_ms INT Actual play duration
platform STRING Web/iOS/Android
stream_source STRING Playlist/Album/Radio
is_completed BOOLEAN Played to end?

Aggregate Tables

artist_agg
SELECT 
    artist_key,
    date_key,
    COUNT(DISTINCT user_key) AS unique_listeners,
    COUNT(*) AS total_streams,
    SUM(stream_duration_ms) / 1000 / 60 AS total_minutes_streamed,
    AVG(stream_duration_ms) AS avg_stream_duration_ms
FROM fact_stream
GROUP BY artist_key, date_key
daily_stream_summary
SELECT 
    date_key,
    platform,
    COUNT(DISTINCT user_key) AS daily_active_users,
    COUNT(*) AS total_streams,
    COUNT(DISTINCT track_key) AS unique_tracks_played,
    SUM(CASE WHEN is_completed THEN 1 ELSE 0 END) AS completed_streams
FROM fact_stream
GROUP BY date_key, platform
user_engagement_metrics
SELECT 
    user_key,
    date_key,
    COUNT(*) AS stream_count,
    COUNT(DISTINCT track_key) AS unique_tracks,
    COUNT(DISTINCT artist_key) AS unique_artists,
    SUM(stream_duration_ms) / 1000 / 60 AS listening_minutes,
    AVG(stream_duration_ms) / track_duration_ms AS avg_completion_rate
FROM fact_stream
JOIN dim_track USING (track_key)
GROUP BY user_key, date_key

🚀 Implementation Guide

Prerequisites

  • Azure Subscription with Owner or Contributor access
  • Resource Group for lakehouse resources
  • Service Principal with appropriate RBAC roles
  • GitHub Account for version control and CI/CD
  • Development Tools:
    • Azure CLI (2.50+)
    • Databricks CLI (0.200+)
    • Python 3.10+
    • Git 2.30+

Step 1: Infrastructure Provisioning

# Login to Azure
az login

# Set subscription context
az account set --subscription "Your-Subscription-ID"

# Create resource group
az group create \
  --name rg-lakehouse-prod \
  --location eastus2

# Deploy infrastructure using Terraform
cd infrastructure/terraform
terraform init
terraform plan -var-file="environments/prod.tfvars"
terraform apply -var-file="environments/prod.tfvars"

Step 2: Configure Source Database

# Connect to Azure SQL Database
sqlcmd -S your-server.database.windows.net -d SourceDB -U sqladmin

# Execute DDL scripts
:r sql/ddl/create_source_tables.sql
:r sql/ddl/create_control_tables.sql

# Load sample data
:r sql/dml/seed_sample_data.sql
GO

Step 3: Deploy ADF Pipelines

# Authenticate to Azure Data Factory
az datafactory create \
  --resource-group rg-lakehouse-prod \
  --factory-name adf-lakehouse-prod \
  --location eastus2

# Deploy linked services
az datafactory linked-service create \
  --resource-group rg-lakehouse-prod \
  --factory-name adf-lakehouse-prod \
  --name AzureSqlLinkedService \
  --properties @adf/linked_services/azure_sql_linked_service.json

# Deploy pipelines
az datafactory pipeline create \
  --resource-group rg-lakehouse-prod \
  --factory-name adf-lakehouse-prod \
  --name MasterIngestionPipeline \
  --pipeline @adf/pipelines/master_ingestion_pipeline.json

Step 4: Configure Databricks

# Install Databricks CLI
pip install databricks-cli

# Configure authentication
databricks configure --token

# Upload notebooks
databricks workspace import_dir \
  databricks/notebooks/ \
  /Workspace/lakehouse/notebooks/ \
  --overwrite

# Deploy Databricks Asset Bundles
cd databricks/bundles
databricks bundle deploy --target prod

Step 5: Initialize Unity Catalog

# Run in Databricks notebook
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

# Create catalog
w.catalogs.create(name="lakehouse_prod", comment="Production lakehouse")

# Create schemas
w.schemas.create(catalog_name="lakehouse_prod", name="bronze")
w.schemas.create(catalog_name="lakehouse_prod", name="silver")
w.schemas.create(catalog_name="lakehouse_prod", name="gold")

# Grant permissions
w.grants.update(
    catalog="lakehouse_prod",
    principal="data-engineers",
    changes=[{"add": ["USE_CATALOG", "USE_SCHEMA", "SELECT"]}]
)

Step 6: Execute Initial Load

# Trigger ADF master pipeline
az datafactory pipeline create-run \
  --resource-group rg-lakehouse-prod \
  --factory-name adf-lakehouse-prod \
  --name MasterIngestionPipeline

# Monitor pipeline execution
az datafactory pipeline-run show \
  --resource-group rg-lakehouse-prod \
  --factory-name adf-lakehouse-prod \
  --run-id <run-id-from-previous-command>

Step 7: Validate Data Quality

# Execute in Databricks
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

# Start DLT pipeline
pipeline_id = w.pipelines.create(
    name="gold_layer_pipeline",
    storage="/mnt/datalake/dlt/gold",
    configuration={"source_schema": "lakehouse_prod.silver"},
    clusters=[{"label": "default", "num_workers": 2}],
    libraries=[{"notebook": {"path": "/lakehouse/notebooks/dlt/gold_pipeline_dlt"}}]
).pipeline_id

w.pipelines.start_update(pipeline_id=pipeline_id)

Step 8: Configure Synapse Integration

-- Create external data source in Synapse
CREATE EXTERNAL DATA SOURCE LakehouseGold
WITH (
    LOCATION = 'abfss://gold@datalakeprod.dfs.core.windows.net/',
    CREDENTIAL = ManagedIdentityCredential
);

-- Create external tables
CREATE EXTERNAL TABLE fact_stream
WITH (
    LOCATION = 'fact_stream/',
    DATA_SOURCE = LakehouseGold,
    FILE_FORMAT = DeltaFormat
);

🔒 Security & Governance

Identity & Access Management

Managed Identities

  • ADF uses system-assigned managed identity for ADLS access
  • Databricks uses access connectors for Unity Catalog authentication
  • Eliminates credential management and rotation overhead

Unity Catalog RBAC

-- Grant catalog-level permissions
GRANT USE CATALOG ON CATALOG lakehouse_prod TO `data-analysts`;

-- Grant schema-level permissions
GRANT USE SCHEMA, SELECT ON SCHEMA lakehouse_prod.gold TO `bi-developers`;

-- Grant table-level permissions
GRANT SELECT ON TABLE lakehouse_prod.gold.fact_stream TO `reporting-service`;

-- Row-level security example
CREATE VIEW gold.fact_stream_restricted AS
SELECT * FROM gold.fact_stream
WHERE user_country = current_user_country();

GRANT SELECT ON VIEW gold.fact_stream_restricted TO `regional-analysts`;

Data Lineage

Unity Catalog automatically captures lineage across:

  • Source-to-Bronze ADF copies
  • Bronze-to-Silver Databricks transformations
  • Silver-to-Gold DLT pipelines
  • Gold-to-Synapse consumption queries

Access lineage via:

w.lineage.get_lineage_by_table(
    table_name="lakehouse_prod.gold.fact_stream",
    include_entity_lineage=True
)

Encryption

  • Data at Rest: Azure Storage Service Encryption (SSE) with customer-managed keys
  • Data in Transit: TLS 1.2+ for all connections
  • Secrets Management: Azure Key Vault integration for credentials

⚡ Performance Optimization

Delta Lake Optimizations

Z-Ordering

# Optimize fact table for query performance
spark.sql("""
    OPTIMIZE lakehouse_prod.gold.fact_stream
    ZORDER BY (date_key, user_key)
""")

Liquid Clustering (Databricks Runtime 13.3+)

# Create table with liquid clustering
spark.sql("""
    CREATE TABLE gold.fact_stream_v2
    USING DELTA
    CLUSTER BY (date_key, user_key)
    AS SELECT * FROM gold.fact_stream
""")

Vacuum for Storage Reclamation

# Remove files older than retention period
spark.sql("""
    VACUUM lakehouse_prod.gold.fact_stream RETAIN 168 HOURS
""")

Partitioning Strategy

# Bronze layer: Partition by ingestion date
bronze_path = "abfss://bronze@datalake.dfs.core.windows.net/users/"
df.write.format("delta") \
  .partitionBy("ingestion_date") \
  .mode("append") \
  .save(bronze_path)

# Gold layer: Partition by business date
df.write.format("delta") \
  .partitionBy("year", "month") \
  .mode("overwrite") \
  .option("replaceWhere", "year = 2024 AND month = 12") \
  .save("gold/fact_stream")

Autoloader Performance Tuning

# Optimize for high-volume ingestion
df = (spark.readStream
  .format("cloudFiles")
  .option("cloudFiles.format", "parquet")
  .option("cloudFiles.schemaLocation", checkpoint_path)
  .option("cloudFiles.maxFilesPerTrigger", 1000)  # Batch size
  .option("cloudFiles.useNotifications", "true")  # Event Grid integration
  .load(bronze_path))

📈 Monitoring & Observability

ADF Monitoring

Pipeline Run Metrics

{
  "metrics": [
    "PipelineSucceededRuns",
    "PipelineFailedRuns",
    "ActivitySucceededRuns",
    "ActivityFailedRuns",
    "TriggerSucceededRuns"
  ],
  "dimensions": ["Name", "FailureType", "PipelineName"]
}

Alerting Rules

  • Pipeline failure → PagerDuty incident
  • Data drift detection → Email notification
  • SLA breach (>2hr latency) → Slack alert

Databricks Monitoring

Job Observability

# Configure job with monitoring
job_config = {
    "name": "silver_processing",
    "email_notifications": {
        "on_failure": ["data-eng-team@company.com"],
        "on_success": ["data-ops@company.com"]
    },
    "health": {
        "rules": [
            {
                "metric": "RUN_DURATION_SECONDS",
                "op": "GREATER_THAN",
                "value": 3600
            }
        ]
    }
}

Delta Live Tables Quality Metrics

# Query DLT event log
event_log = spark.read.format("delta").load(
    "/mnt/datalake/dlt/gold/_system/event_log"
)

# Analyze data quality failures
quality_metrics = event_log.filter(
    "details.flow_progress.metrics IS NOT NULL"
).select(
    "timestamp",
    "details.flow_progress.metrics.num_output_rows",
    "details.flow_progress.data_quality.dropped_records"
)

Custom Dashboards

Key Metrics to Track

  • Ingestion Latency: Time from source change to Bronze landing
  • Transformation SLA: Bronze-to-Gold processing time
  • Data Quality Score: Percentage of records passing expectations
  • Storage Growth Rate: Daily delta in ADLS consumption
  • Cost Per GB Processed: Databricks DBU spend normalized by data volume

💼 Use Cases

1. Real-Time Analytics Dashboard

Streaming ingestion from Azure SQL to Delta Lake enables sub-minute latency for executive dashboards showing live user engagement metrics.

2. Regulatory Compliance Reporting

SCD-2 dimensional modeling preserves full audit history for point-in-time reconstructions required by GDPR and SOX compliance.

3. Machine Learning Feature Store

Gold layer aggregates serve as input features for recommendation models, with Unity Catalog ensuring reproducible feature engineering.

4. Multi-Tenant Analytics

Row-level security in Unity Catalog enables SaaS providers to serve customer-specific analytics from a shared Gold layer.

5. Data Mesh Implementation

Metadata-driven architecture supports domain-oriented data products with centralized governance via Unity Catalog.


🎓 Competencies Demonstrated

Azure Ecosystem Expertise

  • Azure Data Lake Storage Gen2: Hierarchical namespace design, POSIX-style ACLs, optimized layout for Bronze/Silver/Gold separation, secure integration with managed identities, cost-aware storage tiering
  • Azure Synapse Analytics: Serverless SQL over Delta Lake, external tables, separation of compute and storage, ad-hoc analytics on curated Gold datasets
  • Azure Key Vault: Centralized secret management, Databricks–ADF–Synapse integration via managed identities, zero hard-coded credentials
  • Azure Monitor & Log Analytics: Pipeline observability, metric-based alerting, SLA monitoring, cross-service operational telemetry correlation

Data Engineering & Lakehouse Architecture

  • Medallion Architecture: Contract-driven separation of raw, refined, and curated layers with deterministic data promotion
  • Delta Lake Internals: ACID transactions, merge semantics, time travel, vacuum strategy, schema enforcement and evolution
  • Incremental Processing: CDC ingestion, watermark control tables, idempotent reprocessing, replay safety
  • Dimensional Modeling: Star schema design, SCD Type-2 handling, surrogate key management, analytical query optimization

Distributed Processing & Streaming

  • PySpark: Large-scale transformations, window functions, broadcast joins, adaptive query execution
  • Structured Streaming: Exactly-once guarantees, checkpointing, late-arrival handling, backpressure-aware ingestion
  • Autoloader: Notification-driven ingestion, schema inference, high-throughput landing patterns

Data Quality & Reliability Engineering

  • Declarative Data Quality: Expectation-driven validation using Delta Live Tables
  • Failure Isolation: Record-level quarantining, quality metric surfacing, controlled data drops
  • Operational Runbooks: Deterministic recovery paths, replay strategies, incident triage workflows

CI/CD & Platform Engineering

  • GitHub Actions: Multi-environment CI/CD (dev → test → prod), gated deployments, artifact promotion
  • Databricks Asset Bundles: Environment-aware job and pipeline definitions, reproducible deployments
  • Infrastructure as Code: Terraform/Bicep provisioning, immutable infrastructure principles

Security, Governance & Compliance

  • Unity Catalog: Centralized metadata management, fine-grained RBAC, automated lineage tracking
  • Least-Privilege Access: Catalog-, schema-, table-, and view-level authorization
  • Auditability & Lineage: End-to-end traceability from source systems to BI consumption

Performance & Cost Optimization

  • Query Optimization: Partitioning strategies, Z-ordering, liquid clustering
  • Storage Efficiency: Controlled file sizing, vacuum retention policies, lifecycle management
  • Compute Economics: Job vs interactive clusters, workload isolation, DBU cost normalization

Analytics Enablement

  • BI Readiness: Analytics-optimized Gold tables, stable schemas, semantic consistency
  • Self-Service Analytics: Secure analyst access without pipeline-level exposure

Professional Capability Signal

  • End-to-end ownership from ingestion to consumption
  • Production-grade engineering, not tutorial patterns
  • Enterprise constraints treated as first-class: governance, security, cost, reliability

About

This repository documents an enterprise-aligned data engineering implementation on Azure. The design reflects production lakehouse standards: modular ingestion, governed storage, declarative transformations, metadata-driven control, and CI/CD-based deployment of pipelines.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published