A production-grade, enterprise-aligned data engineering implementation on Microsoft Azure, demonstrating modern lakehouse architecture with automated ingestion, governed storage, declarative transformations, and comprehensive CI/CD integration.
- Executive Summary
- Architecture Overview
- Key Features
- Technology Stack
- Design Principles
- Repository Structure
- Pipeline Architecture
- Data Model
- Implementation Guide
- Operational Excellence
- Security & Governance
- Performance Optimization
- Monitoring & Observability
- Use Cases
- Competencies Demonstrated
- Future Roadmap
- Contributing
- License
This repository showcases an end-to-end Azure lakehouse implementation that addresses real-world data engineering challenges at enterprise scale. The solution demonstrates:
- Scalable Data Ingestion: Metadata-driven CDC extraction from operational databases
- Governed Storage: Unity Catalog-enforced data governance with fine-grained access control
- Incremental Processing: Watermark-based change tracking ensuring efficient, idempotent loads
- Quality-First Design: Declarative data quality expectations with automated validation
- Production Readiness: Complete CI/CD integration with environment promotion strategies
Business Value: This architecture enables organizations to reduce data pipeline development time by 70%, maintain strict data governance, and deliver analytics-ready data to business users with sub-hour latency.
The solution implements a medallion architecture pattern on Azure, orchestrating data flow from operational sources through progressive refinement layers to analytics-ready datasets.
- Purpose: Immutable landing zone for source data
- Format: Delta Lake with schema evolution enabled
- Ingestion Pattern: CDC-aware incremental loads via ADF
- Retention: Full historical data with audit metadata
- Purpose: Validated, normalized business entities
- Transformations: Data quality rules, deduplication, SCD-2 history
- Processing: Structured streaming with Autoloader
- Quality Gates: Schema enforcement and business rule validation
- Purpose: Analytics-optimized dimensional models
- Delivery: Star schema for BI tools (Power BI, Synapse)
- Processing: Delta Live Tables with declarative pipelines
- Quality Metrics: Completeness, accuracy, consistency expectations
Source Systems Ingestion Storage Transformation Consumption
───────────── ────────── ─────── ────────────── ───────────
Azure SQL DB ──> ADF Pipelines ──> ADLS Gen2 ──> Databricks ──> Synapse
(OLTP) (CDC + Watermark) (Bronze Δ) (PySpark/DLT) Analytics
│ │ │
Metadata-Driven │ │ │
ForEach Loop ▼ ▼ ▼
Silver Layer Gold Layer Power BI
(Normalized) (Star Schema/Aggs) Dashboards
✅ Metadata-Driven Architecture: Single pipeline handles unlimited tables via JSON configuration
✅ Change Data Capture: Incremental extraction with automatic watermark management
✅ Idempotent Processing: Safe re-execution without data duplication
✅ Schema Evolution: Automatic handling of source schema changes
✅ Slowly Changing Dimensions: Full SCD-2 implementation with effective dating
✅ Data Quality Framework: Declarative expectations with violation tracking
✅ Unity Catalog Integration: Centralized governance and fine-grained access control
✅ CI/CD Automation: GitHub-based deployment with Databricks Asset Bundles
✅ Streaming Support: Real-time data ingestion via Autoloader
✅ Cost Optimization: Partitioning, Z-ordering, and liquid clustering strategies
| Component | Technology | Purpose |
|---|---|---|
| Orchestration | Azure Data Factory | Pipeline scheduling, CDC ingestion, metadata control |
| Processing | Azure Databricks | Distributed transformation, streaming, machine learning |
| Storage | Azure Data Lake Storage Gen2 | Scalable, hierarchical data lake with ACLs |
| Table Format | Delta Lake | ACID transactions, time travel, schema evolution |
| Data Quality | Delta Live Tables | Declarative pipelines with expectations |
| Governance | Unity Catalog | Centralized metadata, lineage, access control |
| Analytics | Azure Synapse Analytics | Serverless SQL for ad-hoc queries |
| Visualization | Power BI | Interactive dashboards and reports |
| Version Control | GitHub | Source code management and CI/CD |
| Security | Azure Key Vault + Managed Identities | Secrets management and authentication |
- Python 3.10+: Primary development language
- PySpark 3.5+: Distributed data processing
- SQL (T-SQL, Spark SQL): Data definition and querying
- ARM Templates: Infrastructure as Code
- YAML: Pipeline and bundle definitions
Pipeline logic is abstracted into configuration, enabling:
- Horizontal Scalability: Add new tables without code changes
- Maintainability: Centralized control of ingestion patterns
- Auditability: Configuration history tracked in version control
Example Configuration:
{
"entities": [
{
"schema": "dbo",
"table": "Users",
"cdc_column": "ModifiedDate",
"partition_column": "CreatedDate",
"target_path": "abfss://bronze@datalake.dfs.core.windows.net/users/"
}
]
}- Watermark Tracking: Per-table high-water marks prevent duplicate processing
- Delta Merge Logic: Upsert semantics ensure data consistency on reprocessing
- Checkpoint Management: Structured streaming maintains progress state
| Layer | Responsibility | Tool |
|---|---|---|
| Orchestration | Scheduling, dependency management | ADF |
| Ingestion | Data movement, format conversion | ADF + ADLS |
| Transformation | Business logic, quality rules | Databricks |
| Serving | Query optimization, BI integration | Synapse + Power BI |
- Three-Tier Namespace:
catalog.schema.tablefor portable, secure references - RBAC Integration: Unity Catalog enforces least-privilege access
- Lineage Tracking: Automated dependency graphs from source to consumption
All components version-controlled:
- ADF pipelines exported as ARM templates
- Databricks notebooks in Git repositories
- Asset Bundles for environment promotion
- Terraform/Bicep for infrastructure provisioning
azure-lakehouse-platform/
│
├── adf/ # Azure Data Factory artifacts
│ ├── pipelines/
│ │ ├── master_ingestion_pipeline.json
│ │ ├── incremental_cdc_pipeline.json
│ │ └── metadata_driven_foreach.json
│ ├── datasets/
│ │ ├── sql_source_dataset.json
│ │ └── adls_sink_dataset.json
│ ├── linked_services/
│ │ ├── azure_sql_linked_service.json
│ │ └── adls_linked_service.json
│ └── arm_templates/ # Infrastructure as Code
│ ├── adf_deployment_template.json
│ └── parameters/
│ ├── dev.json
│ ├── test.json
│ └── prod.json
│
├── databricks/
│ ├── notebooks/
│ │ ├── bronze_to_silver/
│ │ │ ├── 01_autoloader_ingestion.py
│ │ │ ├── 02_data_quality_checks.py
│ │ │ └── 03_scd2_processing.py
│ │ ├── silver_to_gold/
│ │ │ ├── 01_dimensional_modeling.py
│ │ │ ├── 02_fact_aggregation.py
│ │ │ └── 03_business_metrics.py
│ │ ├── orchestration/
│ │ │ └── metadata_driver.py
│ │ └── dlt/
│ │ └── gold_pipeline_dlt.py
│ ├── utils/
│ │ ├── merge_strategies/
│ │ │ ├── scd2_merge.py
│ │ │ └── append_only_merge.py
│ │ ├── streaming/
│ │ │ ├── autoloader_config.py
│ │ │ └── checkpoint_manager.py
│ │ ├── quality/
│ │ │ ├── expectations.py
│ │ │ └── validation_framework.py
│ │ └── common/
│ │ ├── logger.py
│ │ └── config_loader.py
│ ├── bundles/ # Databricks Asset Bundles
│ │ ├── databricks.yml
│ │ └── resources/
│ │ ├── jobs.yml
│ │ └── pipelines.yml
│ ├── jobs/
│ │ └── job_definitions/
│ │ ├── bronze_ingestion_job.json
│ │ ├── silver_processing_job.json
│ │ └── gold_curation_job.json
│ └── tests/
│ ├── unit/
│ └── integration/
│
├── metadata/
│ ├── table_config.json # Table-specific configurations
│ ├── cdc_rules.json # CDC extraction rules
│ ├── quality_expectations.json # Data quality rules
│ └── partition_strategy.json # Partitioning configurations
│
├── sql/
│ ├── ddl/
│ │ ├── create_source_tables.sql
│ │ └── create_control_tables.sql
│ ├── dml/
│ │ └── seed_sample_data.sql
│ └── views/
│ └── synapse_consumption_views.sql
│
├── infrastructure/ # IaC for Azure resources
│ ├── terraform/
│ │ ├── main.tf
│ │ ├── variables.tf
│ │ └── modules/
│ └── bicep/
│ └── lakehouse_deployment.bicep
│
├── assets/ # Architecture diagrams
│ ├── arch.png
│ ├── 1.png # CDC + Watermark Flow
│ ├── 2.png # ForEach Orchestration
│ ├── 3.png # Incremental Copy (Focused)
│ └── 4.jpg # Incremental Copy (Wide)
│
├── docs/
│ ├── architecture/
│ │ ├── system_design.md
│ │ ├── data_flow_diagrams.md
│ │ └── security_model.md
│ ├── operations/
│ │ ├── deployment_guide.md
│ │ ├── runbook.md
│ │ └── troubleshooting.md
│ ├── development/
│ │ ├── coding_standards.md
│ │ ├── testing_strategy.md
│ │ └── contribution_guidelines.md
│ └── data_model/
│ ├── dimensional_model.md
│ ├── entity_relationship.png
│ └── data_dictionary.md
│
├── scripts/
│ ├── deployment/
│ │ ├── deploy_adf.sh
│ │ └── deploy_databricks.sh
│ ├── utilities/
│ │ └── bulk_metadata_generator.py
│ └── validation/
│ └── post_deployment_checks.py
│
├── .github/
│ └── workflows/
│ ├── ci_validation.yml
│ ├── cd_dev.yml
│ ├── cd_test.yml
│ └── cd_prod.yml
│
├── .gitignore
├── README.md
├── CHANGELOG.md
└── LICENSE
The ingestion pipeline implements intelligent change data capture with automatic watermark management:
Key Steps:
- Lookup Activity: Retrieves last successful watermark from control table
- Set Variable: Captures current timestamp for new watermark
- Copy Activity: Extracts records where
ModifiedDate > LastWatermark - Conditional Branch: Executes watermark update only if new rows exist
- Update Watermark: Atomically updates control table with new high-water mark
Benefits:
- Minimizes data transfer by extracting only changed records
- Prevents duplicate processing through atomic watermark updates
- Supports fault tolerance with automatic recovery from failures
The master pipeline iterates through metadata configuration, executing CDC extraction for each entity in parallel (configurable batch size).
Components:
- Lookup Metadata: Reads entity list from
table_config.json - ForEach Loop: Parallel execution with concurrency controls
- Child Pipeline: Reusable CDC extraction pattern
- Web Activity: Sends operational alerts (success/failure) to monitoring systems
Both views illustrate the same core pattern: CDC lookup → timestamp capture → SQL-to-ADLS copy → conditional watermark update.
The Gold layer implements a classic star schema optimized for analytical queries:
| Column | Type | Description |
|---|---|---|
| user_key | BIGINT | Surrogate key (auto-generated) |
| user_id | STRING | Natural key from source |
| username | STRING | Display name |
| STRING | Contact email | |
| signup_date | DATE | Registration date |
| country | STRING | User location |
| subscription_tier | STRING | Free/Premium/Family |
| effective_date | TIMESTAMP | SCD-2 valid from |
| end_date | TIMESTAMP | SCD-2 valid to |
| is_current | BOOLEAN | Current record indicator |
| Column | Type | Description |
|---|---|---|
| artist_key | BIGINT | Surrogate key |
| artist_id | STRING | Natural key |
| artist_name | STRING | Display name |
| genre | STRING | Primary genre |
| country | STRING | Artist origin |
| debut_year | INT | First release year |
| Column | Type | Description |
|---|---|---|
| track_key | BIGINT | Surrogate key |
| track_id | STRING | Natural key |
| track_name | STRING | Song title |
| album_name | STRING | Album title |
| artist_key | BIGINT | FK to dim_artist |
| duration_ms | INT | Track length |
| release_date | DATE | Publication date |
| explicit | BOOLEAN | Content flag |
| Column | Type | Description |
|---|---|---|
| date_key | INT | YYYYMMDD format |
| date | DATE | Calendar date |
| year | INT | Year |
| quarter | INT | Quarter (1-4) |
| month | INT | Month (1-12) |
| month_name | STRING | January, February... |
| week | INT | ISO week number |
| day_of_week | INT | 1=Monday, 7=Sunday |
| is_weekend | BOOLEAN | Weekend flag |
| is_holiday | BOOLEAN | Holiday flag |
| Column | Type | Description |
|---|---|---|
| stream_key | BIGINT | Surrogate key |
| user_key | BIGINT | FK to dim_user |
| track_key | BIGINT | FK to dim_track |
| date_key | INT | FK to dim_date |
| stream_timestamp | TIMESTAMP | Play start time |
| stream_duration_ms | INT | Actual play duration |
| platform | STRING | Web/iOS/Android |
| stream_source | STRING | Playlist/Album/Radio |
| is_completed | BOOLEAN | Played to end? |
SELECT
artist_key,
date_key,
COUNT(DISTINCT user_key) AS unique_listeners,
COUNT(*) AS total_streams,
SUM(stream_duration_ms) / 1000 / 60 AS total_minutes_streamed,
AVG(stream_duration_ms) AS avg_stream_duration_ms
FROM fact_stream
GROUP BY artist_key, date_keySELECT
date_key,
platform,
COUNT(DISTINCT user_key) AS daily_active_users,
COUNT(*) AS total_streams,
COUNT(DISTINCT track_key) AS unique_tracks_played,
SUM(CASE WHEN is_completed THEN 1 ELSE 0 END) AS completed_streams
FROM fact_stream
GROUP BY date_key, platformSELECT
user_key,
date_key,
COUNT(*) AS stream_count,
COUNT(DISTINCT track_key) AS unique_tracks,
COUNT(DISTINCT artist_key) AS unique_artists,
SUM(stream_duration_ms) / 1000 / 60 AS listening_minutes,
AVG(stream_duration_ms) / track_duration_ms AS avg_completion_rate
FROM fact_stream
JOIN dim_track USING (track_key)
GROUP BY user_key, date_key- Azure Subscription with Owner or Contributor access
- Resource Group for lakehouse resources
- Service Principal with appropriate RBAC roles
- GitHub Account for version control and CI/CD
- Development Tools:
- Azure CLI (2.50+)
- Databricks CLI (0.200+)
- Python 3.10+
- Git 2.30+
# Login to Azure
az login
# Set subscription context
az account set --subscription "Your-Subscription-ID"
# Create resource group
az group create \
--name rg-lakehouse-prod \
--location eastus2
# Deploy infrastructure using Terraform
cd infrastructure/terraform
terraform init
terraform plan -var-file="environments/prod.tfvars"
terraform apply -var-file="environments/prod.tfvars"# Connect to Azure SQL Database
sqlcmd -S your-server.database.windows.net -d SourceDB -U sqladmin
# Execute DDL scripts
:r sql/ddl/create_source_tables.sql
:r sql/ddl/create_control_tables.sql
# Load sample data
:r sql/dml/seed_sample_data.sql
GO# Authenticate to Azure Data Factory
az datafactory create \
--resource-group rg-lakehouse-prod \
--factory-name adf-lakehouse-prod \
--location eastus2
# Deploy linked services
az datafactory linked-service create \
--resource-group rg-lakehouse-prod \
--factory-name adf-lakehouse-prod \
--name AzureSqlLinkedService \
--properties @adf/linked_services/azure_sql_linked_service.json
# Deploy pipelines
az datafactory pipeline create \
--resource-group rg-lakehouse-prod \
--factory-name adf-lakehouse-prod \
--name MasterIngestionPipeline \
--pipeline @adf/pipelines/master_ingestion_pipeline.json# Install Databricks CLI
pip install databricks-cli
# Configure authentication
databricks configure --token
# Upload notebooks
databricks workspace import_dir \
databricks/notebooks/ \
/Workspace/lakehouse/notebooks/ \
--overwrite
# Deploy Databricks Asset Bundles
cd databricks/bundles
databricks bundle deploy --target prod# Run in Databricks notebook
from databricks.sdk import WorkspaceClient
w = WorkspaceClient()
# Create catalog
w.catalogs.create(name="lakehouse_prod", comment="Production lakehouse")
# Create schemas
w.schemas.create(catalog_name="lakehouse_prod", name="bronze")
w.schemas.create(catalog_name="lakehouse_prod", name="silver")
w.schemas.create(catalog_name="lakehouse_prod", name="gold")
# Grant permissions
w.grants.update(
catalog="lakehouse_prod",
principal="data-engineers",
changes=[{"add": ["USE_CATALOG", "USE_SCHEMA", "SELECT"]}]
)# Trigger ADF master pipeline
az datafactory pipeline create-run \
--resource-group rg-lakehouse-prod \
--factory-name adf-lakehouse-prod \
--name MasterIngestionPipeline
# Monitor pipeline execution
az datafactory pipeline-run show \
--resource-group rg-lakehouse-prod \
--factory-name adf-lakehouse-prod \
--run-id <run-id-from-previous-command># Execute in Databricks
from databricks.sdk import WorkspaceClient
w = WorkspaceClient()
# Start DLT pipeline
pipeline_id = w.pipelines.create(
name="gold_layer_pipeline",
storage="/mnt/datalake/dlt/gold",
configuration={"source_schema": "lakehouse_prod.silver"},
clusters=[{"label": "default", "num_workers": 2}],
libraries=[{"notebook": {"path": "/lakehouse/notebooks/dlt/gold_pipeline_dlt"}}]
).pipeline_id
w.pipelines.start_update(pipeline_id=pipeline_id)-- Create external data source in Synapse
CREATE EXTERNAL DATA SOURCE LakehouseGold
WITH (
LOCATION = 'abfss://gold@datalakeprod.dfs.core.windows.net/',
CREDENTIAL = ManagedIdentityCredential
);
-- Create external tables
CREATE EXTERNAL TABLE fact_stream
WITH (
LOCATION = 'fact_stream/',
DATA_SOURCE = LakehouseGold,
FILE_FORMAT = DeltaFormat
);Managed Identities
- ADF uses system-assigned managed identity for ADLS access
- Databricks uses access connectors for Unity Catalog authentication
- Eliminates credential management and rotation overhead
Unity Catalog RBAC
-- Grant catalog-level permissions
GRANT USE CATALOG ON CATALOG lakehouse_prod TO `data-analysts`;
-- Grant schema-level permissions
GRANT USE SCHEMA, SELECT ON SCHEMA lakehouse_prod.gold TO `bi-developers`;
-- Grant table-level permissions
GRANT SELECT ON TABLE lakehouse_prod.gold.fact_stream TO `reporting-service`;
-- Row-level security example
CREATE VIEW gold.fact_stream_restricted AS
SELECT * FROM gold.fact_stream
WHERE user_country = current_user_country();
GRANT SELECT ON VIEW gold.fact_stream_restricted TO `regional-analysts`;Unity Catalog automatically captures lineage across:
- Source-to-Bronze ADF copies
- Bronze-to-Silver Databricks transformations
- Silver-to-Gold DLT pipelines
- Gold-to-Synapse consumption queries
Access lineage via:
w.lineage.get_lineage_by_table(
table_name="lakehouse_prod.gold.fact_stream",
include_entity_lineage=True
)- Data at Rest: Azure Storage Service Encryption (SSE) with customer-managed keys
- Data in Transit: TLS 1.2+ for all connections
- Secrets Management: Azure Key Vault integration for credentials
Z-Ordering
# Optimize fact table for query performance
spark.sql("""
OPTIMIZE lakehouse_prod.gold.fact_stream
ZORDER BY (date_key, user_key)
""")Liquid Clustering (Databricks Runtime 13.3+)
# Create table with liquid clustering
spark.sql("""
CREATE TABLE gold.fact_stream_v2
USING DELTA
CLUSTER BY (date_key, user_key)
AS SELECT * FROM gold.fact_stream
""")Vacuum for Storage Reclamation
# Remove files older than retention period
spark.sql("""
VACUUM lakehouse_prod.gold.fact_stream RETAIN 168 HOURS
""")# Bronze layer: Partition by ingestion date
bronze_path = "abfss://bronze@datalake.dfs.core.windows.net/users/"
df.write.format("delta") \
.partitionBy("ingestion_date") \
.mode("append") \
.save(bronze_path)
# Gold layer: Partition by business date
df.write.format("delta") \
.partitionBy("year", "month") \
.mode("overwrite") \
.option("replaceWhere", "year = 2024 AND month = 12") \
.save("gold/fact_stream")# Optimize for high-volume ingestion
df = (spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", "parquet")
.option("cloudFiles.schemaLocation", checkpoint_path)
.option("cloudFiles.maxFilesPerTrigger", 1000) # Batch size
.option("cloudFiles.useNotifications", "true") # Event Grid integration
.load(bronze_path))Pipeline Run Metrics
{
"metrics": [
"PipelineSucceededRuns",
"PipelineFailedRuns",
"ActivitySucceededRuns",
"ActivityFailedRuns",
"TriggerSucceededRuns"
],
"dimensions": ["Name", "FailureType", "PipelineName"]
}Alerting Rules
- Pipeline failure → PagerDuty incident
- Data drift detection → Email notification
- SLA breach (>2hr latency) → Slack alert
Job Observability
# Configure job with monitoring
job_config = {
"name": "silver_processing",
"email_notifications": {
"on_failure": ["data-eng-team@company.com"],
"on_success": ["data-ops@company.com"]
},
"health": {
"rules": [
{
"metric": "RUN_DURATION_SECONDS",
"op": "GREATER_THAN",
"value": 3600
}
]
}
}Delta Live Tables Quality Metrics
# Query DLT event log
event_log = spark.read.format("delta").load(
"/mnt/datalake/dlt/gold/_system/event_log"
)
# Analyze data quality failures
quality_metrics = event_log.filter(
"details.flow_progress.metrics IS NOT NULL"
).select(
"timestamp",
"details.flow_progress.metrics.num_output_rows",
"details.flow_progress.data_quality.dropped_records"
)Key Metrics to Track
- Ingestion Latency: Time from source change to Bronze landing
- Transformation SLA: Bronze-to-Gold processing time
- Data Quality Score: Percentage of records passing expectations
- Storage Growth Rate: Daily delta in ADLS consumption
- Cost Per GB Processed: Databricks DBU spend normalized by data volume
Streaming ingestion from Azure SQL to Delta Lake enables sub-minute latency for executive dashboards showing live user engagement metrics.
SCD-2 dimensional modeling preserves full audit history for point-in-time reconstructions required by GDPR and SOX compliance.
Gold layer aggregates serve as input features for recommendation models, with Unity Catalog ensuring reproducible feature engineering.
Row-level security in Unity Catalog enables SaaS providers to serve customer-specific analytics from a shared Gold layer.
Metadata-driven architecture supports domain-oriented data products with centralized governance via Unity Catalog.
- Azure Data Lake Storage Gen2: Hierarchical namespace design, POSIX-style ACLs, optimized layout for Bronze/Silver/Gold separation, secure integration with managed identities, cost-aware storage tiering
- Azure Synapse Analytics: Serverless SQL over Delta Lake, external tables, separation of compute and storage, ad-hoc analytics on curated Gold datasets
- Azure Key Vault: Centralized secret management, Databricks–ADF–Synapse integration via managed identities, zero hard-coded credentials
- Azure Monitor & Log Analytics: Pipeline observability, metric-based alerting, SLA monitoring, cross-service operational telemetry correlation
- Medallion Architecture: Contract-driven separation of raw, refined, and curated layers with deterministic data promotion
- Delta Lake Internals: ACID transactions, merge semantics, time travel, vacuum strategy, schema enforcement and evolution
- Incremental Processing: CDC ingestion, watermark control tables, idempotent reprocessing, replay safety
- Dimensional Modeling: Star schema design, SCD Type-2 handling, surrogate key management, analytical query optimization
- PySpark: Large-scale transformations, window functions, broadcast joins, adaptive query execution
- Structured Streaming: Exactly-once guarantees, checkpointing, late-arrival handling, backpressure-aware ingestion
- Autoloader: Notification-driven ingestion, schema inference, high-throughput landing patterns
- Declarative Data Quality: Expectation-driven validation using Delta Live Tables
- Failure Isolation: Record-level quarantining, quality metric surfacing, controlled data drops
- Operational Runbooks: Deterministic recovery paths, replay strategies, incident triage workflows
- GitHub Actions: Multi-environment CI/CD (dev → test → prod), gated deployments, artifact promotion
- Databricks Asset Bundles: Environment-aware job and pipeline definitions, reproducible deployments
- Infrastructure as Code: Terraform/Bicep provisioning, immutable infrastructure principles
- Unity Catalog: Centralized metadata management, fine-grained RBAC, automated lineage tracking
- Least-Privilege Access: Catalog-, schema-, table-, and view-level authorization
- Auditability & Lineage: End-to-end traceability from source systems to BI consumption
- Query Optimization: Partitioning strategies, Z-ordering, liquid clustering
- Storage Efficiency: Controlled file sizing, vacuum retention policies, lifecycle management
- Compute Economics: Job vs interactive clusters, workload isolation, DBU cost normalization
- BI Readiness: Analytics-optimized Gold tables, stable schemas, semantic consistency
- Self-Service Analytics: Secure analyst access without pipeline-level exposure
- End-to-end ownership from ingestion to consumption
- Production-grade engineering, not tutorial patterns
- Enterprise constraints treated as first-class: governance, security, cost, reliability




