Skip to content

krish567366/hyper-fabric-interconnect

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 HyperFabric Interconnect

A breakthrough protocol architecture for ultra-low-latency, high-bandwidth interconnects powering AI superclusters and quantum simulation networks.

PyPI version Python 3.8+ MIT License

🧬 Vision

This protocol is the backbone of next-generation computation — beyond TCP/IP, beyond RDMA. It enables microsecond-scale data propagation, predictive routing, and hardware-level orchestration across AI/ML, HPC, and quantum-hybrid clusters.

⚡ Features

  • Ultra-Low Latency: Microsecond-scale data propagation
  • Predictive Routing: ML-enhanced path optimization
  • Hardware-Level Orchestration: Direct hardware signature mapping
  • Fault Tolerance: Auto self-healing interconnect clusters
  • Zero-Copy Buffers: Memory-efficient data transfer simulation
  • Quantum-Aware: Support for QPU entanglement message routing

🚀 Installation

pip install hyper-fabric-interconnect

📖 Quick Start

from hyperfabric import HyperFabricProtocol, NodeSignature

# Initialize the protocol
protocol = HyperFabricProtocol()

# Register a virtual node
node = NodeSignature(
    node_id="gpu-cluster-01",
    hardware_type="nvidia-h100",
    bandwidth_gbps=400,
    latency_ns=100
)
protocol.register_node(node)

# Send data with predictive routing
await protocol.send_data(
    source="gpu-cluster-01",
    destination="qpu-fabric-02",
    data=large_tensor,
    priority="ultra_high"
)

🛠️ CLI Tools

# Ping fabric nodes
hfabric ping gpu-cluster-01

# View topology
hfabric topo --visualize

# Run diagnostics
hfabric diagnose --full

📚 Documentation

Full documentation is available at GitHub Pages

🧠 Use Cases

  • AI Supercluster Communication: Synchronizing transformer model shards across distributed GPUs
  • Quantum-Enhanced AI: Routing QPU entanglement messages for hybrid classical-quantum computation
  • HPC Workloads: Ultra-low latency scientific simulation data exchange
  • Edge Computing: Adaptive cyber-physical compute swarm coordination

👨‍💻 Author

Krishna Bajpai
Email: [email protected]
GitHub: @krish567366

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages