-
Notifications
You must be signed in to change notification settings - Fork 13.5k
[mlir] Convert expand_shape
to more static form
#112265
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Sink tensor.cast op through tensor.expand_shape ops when it makes the expand op more static. This allows for other ops further down infer their shapes.
When output_sizes can be determined, convert to a static expand_shape op and insert cast ops. The top cast will be (dynamic -> static) allowing it to be propagated upwards and the bottom will be (static -> dynamic) allowing it to propagate down (or cancel with adjacent tensor.cast ops). [skip ci]
expand_shape
to more static form
|
||
LogicalResult matchAndRewrite(ExpandShapeOp expandOp, | ||
PatternRewriter &rewriter) const override { | ||
SmallVector<int64_t> newOutputShape(expandOp.getResultType().getShape()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You should look for source of expandOp
is a tensor.cast
operation where the source of the cast has a more static shape than the result (using
bool canFoldIntoConsumerOp(CastOp castOp); |
There is ChainedTensorCast pattern, which folds the tensor.cast ops into a single tensor.cast op. Then you can follow what Mahesh suggested, which folds the producer tensor.cast into the expand_shape op. There is a canFoldIntoProducerOp, which can be used in the |
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-tensor Author: Ian Wood (IanWood1) ChangesInitially, my idea was to sink >When output_sizes can be determined, convert to a static expand_shape My main concern here is that the generated casts are not guaranteed to fold with other casts. This is somewhat similar to what Also, the opposite might happen as well. Where Sidenote: I disabled CI because Full diff: https://github.com/llvm/llvm-project/pull/112265.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
index 4d6c5965c4fcc3..ee0e8c2d201226 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
@@ -24,6 +24,7 @@
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
+#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
@@ -1982,6 +1983,83 @@ struct FoldDimOfCollapseShape : public OpRewritePattern<DimOp> {
return success();
}
};
+
+struct ConvertToStaticExpandShape : public OpRewritePattern<ExpandShapeOp> {
+ using OpRewritePattern<ExpandShapeOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(ExpandShapeOp expandOp,
+ PatternRewriter &rewriter) const override {
+ auto castOp = expandOp.getSrc().getDefiningOp<CastOp>();
+ if (!canFoldIntoConsumerOp(castOp))
+ return failure();
+
+ const ArrayRef<int64_t> castSrcShape =
+ castOp.getSource().getType().getShape();
+ const SmallVector<ReassociationIndices, 4> reassoc =
+ expandOp.getReassociationIndices();
+
+ SmallVector<int64_t> newOutputShape(expandOp.getResultType().getShape());
+ SmallVector<Value> dynamicOutputShape;
+ auto outputIt = expandOp.getOutputShape().begin();
+
+ for (const auto &[inputDim, innerReassoc] : llvm::enumerate(reassoc)) {
+ for (const uint64_t outDim : innerReassoc) {
+ if (!ShapedType::isDynamic(newOutputShape[outDim]))
+ continue;
+
+ // If the cast's src type is dynamic, don't infer any of the
+ // corresponding expanded dimensions. `tensor.expand_shape` requires at
+ // least one of the expanded dimensions to be dynamic if the input is
+ // dynamic.
+ Value val = *outputIt;
+ ++outputIt;
+ if (ShapedType::isDynamic(castSrcShape[inputDim])) {
+ dynamicOutputShape.push_back(val);
+ continue;
+ }
+
+ APInt cst;
+ if (matchPattern(val, m_ConstantInt(&cst))) {
+ newOutputShape[outDim] = cst.getSExtValue();
+ } else {
+ dynamicOutputShape.push_back(val);
+ }
+ }
+ }
+
+ // Couldn't match any values, nothing to change
+ if (expandOp.getOutputShape().size() == dynamicOutputShape.size())
+ return failure();
+
+ // Calculate the input shape from the output
+ SmallVector<int64_t> newInputShape(expandOp.getSrcType().getRank(), 1l);
+ for (uint64_t inDim = 0; inDim < newInputShape.size(); inDim++) {
+ for (auto outDim : reassoc[inDim]) {
+ auto ofr = newOutputShape[outDim];
+ if (ShapedType::isDynamic(ofr)) {
+ newInputShape[inDim] = ShapedType::kDynamic;
+ break;
+ }
+ newInputShape[inDim] *= ofr;
+ }
+ }
+
+ SmallVector<OpFoldResult> outputOfr =
+ getMixedValues(newOutputShape, dynamicOutputShape, rewriter);
+ auto inputType = RankedTensorType::get(
+ newInputShape, expandOp.getSrcType().getElementType());
+ auto outputType = RankedTensorType::get(
+ newOutputShape, expandOp.getSrcType().getElementType());
+ auto inputCast = rewriter.create<CastOp>(expandOp.getLoc(), inputType,
+ expandOp.getSrc());
+ auto newExpand = rewriter.create<ExpandShapeOp>(
+ expandOp.getLoc(), outputType, inputCast.getResult(),
+ expandOp.getReassociationIndices(), outputOfr);
+ rewriter.replaceOpWithNewOp<CastOp>(expandOp, expandOp.getType(),
+ newExpand.getResult());
+ return success();
+ }
+};
} // namespace
void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
@@ -1989,7 +2067,7 @@ void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
results.add<
ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>,
ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>,
- FoldReshapeWithConstant<ExpandShapeOp>,
+ ConvertToStaticExpandShape, FoldReshapeWithConstant<ExpandShapeOp>,
FoldReshapeWithSplat<ExpandShapeOp>,
FoldReshapeWithFromElements<ExpandShapeOp>, FoldDimOfExpandShape,
FoldDimOfCollapseShape>(context);
diff --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
index 0aa2d33ef17ed4..63f394a14d3899 100644
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ b/mlir/test/Dialect/Tensor/canonicalize.mlir
@@ -2718,3 +2718,57 @@ func.func @pack_dont_drop_attributes(%arg0: tensor<?x?x?xf16>, %arg1: tensor<128
%pack = tensor.pack %arg0 padding_value(%cst : f16) outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [16, 1] into %arg1 {test_attr} : tensor<?x?x?xf16> -> tensor<128x?x100x16x1xf16>
return %pack : tensor<128x?x100x16x1xf16>
}
+
+// -----
+
+func.func @fold_expand_of_cast(%arg0 : tensor<10x10xf32>)
+ -> tensor<10x1x10xf32> {
+ %c1 = arith.constant 1 : index
+ %c10 = arith.constant 10 : index
+ %0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
+ %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10]
+ : tensor<?x?xf32> into tensor<?x?x?xf32>
+ %2 = tensor.cast %1 : tensor<?x?x?xf32> to tensor<10x1x10xf32>
+ return %2 : tensor<10x1x10xf32>
+}
+// CHECK-LABEL: func.func @fold_expand_of_cast
+// CHECK: %[[RES:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]] output_shape [10, 1, 10]
+// CHECK: return %[[RES]]
+
+// -----
+
+func.func @sink_expand_of_cast(%arg0 : tensor<?x10xf32>)
+ -> tensor<?x?x?xf32> {
+ %c1 = arith.constant 1 : index
+ %c10 = arith.constant 10 : index
+ %0 = tensor.cast %arg0 : tensor<?x10xf32> to tensor<?x?xf32>
+ %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10]
+ : tensor<?x?xf32> into tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func.func @sink_expand_of_cast
+// CHECK-DAG: %[[C10:.*]] = arith.constant 10
+// CHECK-DAG: %[[C1:.*]] = arith.constant 1
+// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]]
+// CHECK-SAME: output_shape [%[[C10]], %[[C1]], 10]
+// CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]]
+// CHECK: return %[[RES]]
+
+// -----
+
+func.func @partial_sink_expand_of_cast(%arg0 : tensor<10x10xf32>, %arg1 : index, %arg2 : index)
+ -> tensor<?x?x?xf32> {
+ %c10 = arith.constant 10 : index
+ %0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
+ %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %c10]
+ : tensor<?x?xf32> into tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func.func @partial_sink_expand_of_cast
+// CHECK: %[[CAST:.+]] = tensor.cast
+// CHECK-SAME: tensor<10x10xf32> to tensor<?x10xf32>
+// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]]
+// CHECK-SAME: output_shape [%{{.*}}, %{{.*}}, 10]
+// CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]]
+// CHECK-SAME: tensor<?x?x10xf32> to tensor<?x?x?xf32>
+// CHECK: return %[[RES]]
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This looks mostly good. I left a few comments. Please address before landing them.
return failure(); | ||
|
||
// Calculate the input shape from the output | ||
SmallVector<int64_t> newInputShape(expandOp.getSrcType().getRank(), 1l); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you need this? Isnt the input shape the same as the source of the cast operation?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
From the partial_sink_expand_of_cast
test case:
%0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
%1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %c10]
: tensor<?x?xf32> into tensor<?x?x?xf32>
tensor.expand_shape
's src type cannot become fully static because the op requires a dynamic input dim if the output is dynamic. The input cast becomes tensor<10x10xf32> to tensor<?x10xf32>
instead of being fully removed. I could just bail on cases where not all SSA values can be matched (if the input dim can be made static). That way teh input shape would be the same as the tensor.cast
at the cost of not being able to propagate any of the static dim info
Nit: please cleanup the description to only describe the commit before landing the PR. |
@@ -1982,14 +1983,90 @@ struct FoldDimOfCollapseShape : public OpRewritePattern<DimOp> { | |||
return success(); | |||
} | |||
}; | |||
|
|||
struct ConvertToStaticExpandShape : public OpRewritePattern<ExpandShapeOp> { |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you please document the pattern with a high-level description of what this pattern is doing? That'll be useful to future folks having to debug or improve this :)
(or just skimming the codebase).
Thanks.
Add pattern that converts a `tensor.expand_shape` op to a more static form. This matches the pattern: `tensor.cast` -> `tensor.expand_shape` if it has a foldable `tensor.cast` and some constant foldable `output_shape` operands for the `tensor.expand_shape`. This makes the `tensor.expand_shape` more static, as well as allowing the static information to be propagated further down in the program.
Add pattern that converts a
tensor.expand_shape
op to a more static form.This matches the pattern:
tensor.cast
->tensor.expand_shape
if it has a foldabletensor.cast
and some constant foldableoutput_shape
operands for thetensor.expand_shape
. This makes thetensor.expand_shape
more static, as well as allowing the static information to be propagated further down in the program.