Skip to content

[DirectX] Legalize memcpy #139173

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 80 additions & 0 deletions llvm/lib/Target/DirectX/DXILLegalizePass.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -246,6 +246,61 @@ downcastI64toI32InsertExtractElements(Instruction &I,
}
}

static void emitMemcpyExpansion(IRBuilder<> &Builder, Value *Dst, Value *Src,
ConstantInt *Length) {

uint64_t ByteLength = Length->getZExtValue();
if (ByteLength == 0)
return;

LLVMContext &Ctx = Builder.getContext();
const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout();

auto GetArrTyFromVal = [](Value *Val) -> ArrayType * {
assert(isa<AllocaInst>(Val) ||
isa<GlobalVariable>(Val) &&
"Expected Val to be an Alloca or Global Variable");
if (auto *Alloca = dyn_cast<AllocaInst>(Val))
return dyn_cast<ArrayType>(Alloca->getAllocatedType());
if (auto *GlobalVar = dyn_cast<GlobalVariable>(Val))
return dyn_cast<ArrayType>(GlobalVar->getValueType());
return nullptr;
};

ArrayType *ArrTy = GetArrTyFromVal(Dst);
assert(ArrTy && "Expected Dst of memcpy to be a Pointer to an Array Type");
if (auto *DstGlobalVar = dyn_cast<GlobalVariable>(Dst))
assert(!DstGlobalVar->isConstant() &&
"The Dst of memcpy must not be a constant Global Variable");

[[maybe_unused]] ArrayType *SrcArrTy = GetArrTyFromVal(Src);
assert(SrcArrTy && "Expected Src of memcpy to be a Pointer to an Array Type");

// This assumption simplifies implementation and covers currently-known
// use-cases for DXIL. It may be relaxed in the future if required.
assert(ArrTy == SrcArrTy &&
"Array Types of Src and Dst in memcpy must match");

Type *ElemTy = ArrTy->getElementType();
uint64_t ElemSize = DL.getTypeStoreSize(ElemTy);
assert(ElemSize > 0 && "Size must be set");

[[maybe_unused]] uint64_t Size = ArrTy->getArrayNumElements();
assert(ElemSize * Size >= ByteLength &&
"Array size must be at least as large as the memcpy length");

uint64_t NumElemsToCopy = ByteLength / ElemSize;
assert(ByteLength % ElemSize == 0 &&
"memcpy length must be divisible by array element type");
for (uint64_t I = 0; I < NumElemsToCopy; ++I) {
Value *Offset = ConstantInt::get(Type::getInt32Ty(Ctx), I);
Value *SrcPtr = Builder.CreateGEP(ElemTy, Src, Offset, "gep");
Value *SrcVal = Builder.CreateLoad(ElemTy, SrcPtr);
Value *DstPtr = Builder.CreateGEP(ElemTy, Dst, Offset, "gep");
Builder.CreateStore(SrcVal, DstPtr);
}
}

static void emitMemsetExpansion(IRBuilder<> &Builder, Value *Dst, Value *Val,
ConstantInt *SizeCI,
DenseMap<Value *, Value *> &ReplacedValues) {
Expand Down Expand Up @@ -296,6 +351,30 @@ static void emitMemsetExpansion(IRBuilder<> &Builder, Value *Dst, Value *Val,
}
}

static void removeMemCpy(Instruction &I,
SmallVectorImpl<Instruction *> &ToRemove,
DenseMap<Value *, Value *> &ReplacedValues) {

CallInst *CI = dyn_cast<CallInst>(&I);
if (!CI)
return;

Intrinsic::ID ID = CI->getIntrinsicID();
if (ID != Intrinsic::memcpy)
return;

IRBuilder<> Builder(&I);
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
ConstantInt *Length = dyn_cast<ConstantInt>(CI->getArgOperand(2));
assert(Length && "Expected Length to be a ConstantInt");
ConstantInt *IsVolatile = dyn_cast<ConstantInt>(CI->getArgOperand(3));
assert(IsVolatile && "Expected IsVolatile to be a ConstantInt");
assert(IsVolatile->getZExtValue() == 0 && "Expected IsVolatile to be false");
emitMemcpyExpansion(Builder, Dst, Src, Length);
ToRemove.push_back(CI);
}

static void removeMemSet(Instruction &I,
SmallVectorImpl<Instruction *> &ToRemove,
DenseMap<Value *, Value *> &ReplacedValues) {
Expand Down Expand Up @@ -348,6 +427,7 @@ class DXILLegalizationPipeline {
LegalizationPipeline.push_back(fixI8UseChain);
LegalizationPipeline.push_back(downcastI64toI32InsertExtractElements);
LegalizationPipeline.push_back(legalizeFreeze);
LegalizationPipeline.push_back(removeMemCpy);
LegalizationPipeline.push_back(removeMemSet);
}
};
Expand Down
174 changes: 174 additions & 0 deletions llvm/test/CodeGen/DirectX/legalize-memcpy.ll
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 5
; RUN: opt -S -dxil-legalize -dxil-finalize-linkage -mtriple=dxil-pc-shadermodel6.3-library %s | FileCheck %s

@outputStrides = external local_unnamed_addr addrspace(2) global [2 x <4 x i32>], align 4

define void @replace_2x4xint_global_memcpy_test() #0 {
; CHECK-LABEL: define void @replace_2x4xint_global_memcpy_test(
; CHECK-SAME: ) #[[ATTR0:[0-9]+]] {
; CHECK-NEXT: [[TMP1:%.*]] = alloca [2 x <4 x i32>], align 16
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 32, ptr nonnull [[TMP1]])
; CHECK-NEXT: [[TMP2:%.*]] = load <4 x i32>, ptr addrspace(2) @outputStrides, align 16
; CHECK-NEXT: [[GEP:%.*]] = getelementptr <4 x i32>, ptr [[TMP1]], i32 0
; CHECK-NEXT: store <4 x i32> [[TMP2]], ptr [[GEP]], align 16
; CHECK-NEXT: [[TMP3:%.*]] = load <4 x i32>, ptr addrspace(2) getelementptr (<4 x i32>, ptr addrspace(2) @outputStrides, i32 1), align 16
; CHECK-NEXT: [[GEP1:%.*]] = getelementptr <4 x i32>, ptr [[TMP1]], i32 1
; CHECK-NEXT: store <4 x i32> [[TMP3]], ptr [[GEP1]], align 16
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 32, ptr nonnull [[TMP1]])
; CHECK-NEXT: ret void
;
%1 = alloca [2 x <4 x i32>], align 16
call void @llvm.lifetime.start.p0(i64 32, ptr nonnull %1)
call void @llvm.memcpy.p0.p2.i32(ptr nonnull align 16 dereferenceable(32) %1, ptr addrspace(2) align 16 dereferenceable(32) @outputStrides, i32 32, i1 false)
call void @llvm.lifetime.end.p0(i64 32, ptr nonnull %1)
ret void
}

define void @replace_int_memcpy_test() #0 {
; CHECK-LABEL: define void @replace_int_memcpy_test(
; CHECK-SAME: ) #[[ATTR0]] {
; CHECK-NEXT: [[TMP1:%.*]] = alloca [1 x i32], align 4
; CHECK-NEXT: [[TMP2:%.*]] = alloca [1 x i32], align 4
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 4, ptr nonnull [[TMP1]])
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 4, ptr nonnull [[TMP2]])
; CHECK-NEXT: [[GEP:%.*]] = getelementptr i32, ptr [[TMP1]], i32 0
; CHECK-NEXT: [[TMP3:%.*]] = load i32, ptr [[GEP]], align 4
; CHECK-NEXT: [[GEP1:%.*]] = getelementptr i32, ptr [[TMP2]], i32 0
; CHECK-NEXT: store i32 [[TMP3]], ptr [[GEP1]], align 4
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 4, ptr nonnull [[TMP2]])
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 4, ptr nonnull [[TMP1]])
; CHECK-NEXT: ret void
;
%1 = alloca [1 x i32], align 4
%2 = alloca [1 x i32], align 4
call void @llvm.lifetime.start.p0(i64 4, ptr nonnull %1)
call void @llvm.lifetime.start.p0(i64 4, ptr nonnull %2)
call void @llvm.memcpy.p0.p0.i32(ptr nonnull align 4 dereferenceable(4) %2, ptr align 4 dereferenceable(4) %1, i32 4, i1 false)
call void @llvm.lifetime.end.p0(i64 4, ptr nonnull %2)
call void @llvm.lifetime.end.p0(i64 4, ptr nonnull %1)
ret void
}

define void @replace_int16_memcpy_test() #0 {
; CHECK-LABEL: define void @replace_int16_memcpy_test(
; CHECK-SAME: ) #[[ATTR0]] {
; CHECK-NEXT: [[TMP1:%.*]] = alloca [2 x i16], align 2
; CHECK-NEXT: [[TMP2:%.*]] = alloca [2 x i16], align 2
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 4, ptr nonnull [[TMP1]])
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 4, ptr nonnull [[TMP2]])
; CHECK-NEXT: [[GEP:%.*]] = getelementptr i16, ptr [[TMP1]], i32 0
; CHECK-NEXT: [[TMP3:%.*]] = load i16, ptr [[GEP]], align 2
; CHECK-NEXT: [[GEP1:%.*]] = getelementptr i16, ptr [[TMP2]], i32 0
; CHECK-NEXT: store i16 [[TMP3]], ptr [[GEP1]], align 2
; CHECK-NEXT: [[GEP2:%.*]] = getelementptr i16, ptr [[TMP1]], i32 1
; CHECK-NEXT: [[TMP4:%.*]] = load i16, ptr [[GEP2]], align 2
; CHECK-NEXT: [[GEP3:%.*]] = getelementptr i16, ptr [[TMP2]], i32 1
; CHECK-NEXT: store i16 [[TMP4]], ptr [[GEP3]], align 2
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 4, ptr nonnull [[TMP2]])
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 4, ptr nonnull [[TMP1]])
; CHECK-NEXT: ret void
;
%1 = alloca [2 x i16], align 2
%2 = alloca [2 x i16], align 2
call void @llvm.lifetime.start.p0(i64 4, ptr nonnull %1)
call void @llvm.lifetime.start.p0(i64 4, ptr nonnull %2)
call void @llvm.memcpy.p0.p0.i32(ptr nonnull align 2 dereferenceable(4) %2, ptr align 2 dereferenceable(4) %1, i32 4, i1 false)
call void @llvm.lifetime.end.p0(i64 4, ptr nonnull %2)
call void @llvm.lifetime.end.p0(i64 4, ptr nonnull %1)
ret void
}

define void @replace_float_memcpy_test() #0 {
; CHECK-LABEL: define void @replace_float_memcpy_test(
; CHECK-SAME: ) #[[ATTR0]] {
; CHECK-NEXT: [[TMP1:%.*]] = alloca [2 x float], align 4
; CHECK-NEXT: [[TMP2:%.*]] = alloca [2 x float], align 4
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 8, ptr nonnull [[TMP1]])
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 8, ptr nonnull [[TMP2]])
; CHECK-NEXT: [[GEP:%.*]] = getelementptr float, ptr [[TMP1]], i32 0
; CHECK-NEXT: [[TMP3:%.*]] = load float, ptr [[GEP]], align 4
; CHECK-NEXT: [[GEP1:%.*]] = getelementptr float, ptr [[TMP2]], i32 0
; CHECK-NEXT: store float [[TMP3]], ptr [[GEP1]], align 4
; CHECK-NEXT: [[GEP2:%.*]] = getelementptr float, ptr [[TMP1]], i32 1
; CHECK-NEXT: [[TMP4:%.*]] = load float, ptr [[GEP2]], align 4
; CHECK-NEXT: [[GEP3:%.*]] = getelementptr float, ptr [[TMP2]], i32 1
; CHECK-NEXT: store float [[TMP4]], ptr [[GEP3]], align 4
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 8, ptr nonnull [[TMP2]])
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 8, ptr nonnull [[TMP1]])
; CHECK-NEXT: ret void
;
%1 = alloca [2 x float], align 4
%2 = alloca [2 x float], align 4
call void @llvm.lifetime.start.p0(i64 8, ptr nonnull %1)
call void @llvm.lifetime.start.p0(i64 8, ptr nonnull %2)
call void @llvm.memcpy.p0.p0.i32(ptr nonnull align 4 dereferenceable(8) %2, ptr align 4 dereferenceable(8) %1, i32 8, i1 false)
call void @llvm.lifetime.end.p0(i64 8, ptr nonnull %2)
call void @llvm.lifetime.end.p0(i64 8, ptr nonnull %1)
ret void
}

define void @replace_double_memcpy_test() #0 {
; CHECK-LABEL: define void @replace_double_memcpy_test(
; CHECK-SAME: ) #[[ATTR0]] {
; CHECK-NEXT: [[TMP1:%.*]] = alloca [2 x double], align 4
; CHECK-NEXT: [[TMP2:%.*]] = alloca [2 x double], align 4
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 16, ptr nonnull [[TMP1]])
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 16, ptr nonnull [[TMP2]])
; CHECK-NEXT: [[GEP:%.*]] = getelementptr double, ptr [[TMP1]], i32 0
; CHECK-NEXT: [[TMP3:%.*]] = load double, ptr [[GEP]], align 8
; CHECK-NEXT: [[GEP1:%.*]] = getelementptr double, ptr [[TMP2]], i32 0
; CHECK-NEXT: store double [[TMP3]], ptr [[GEP1]], align 8
; CHECK-NEXT: [[GEP2:%.*]] = getelementptr double, ptr [[TMP1]], i32 1
; CHECK-NEXT: [[TMP4:%.*]] = load double, ptr [[GEP2]], align 8
; CHECK-NEXT: [[GEP3:%.*]] = getelementptr double, ptr [[TMP2]], i32 1
; CHECK-NEXT: store double [[TMP4]], ptr [[GEP3]], align 8
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 16, ptr nonnull [[TMP2]])
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 16, ptr nonnull [[TMP1]])
; CHECK-NEXT: ret void
;
%1 = alloca [2 x double], align 4
%2 = alloca [2 x double], align 4
call void @llvm.lifetime.start.p0(i64 16, ptr nonnull %1)
call void @llvm.lifetime.start.p0(i64 16, ptr nonnull %2)
call void @llvm.memcpy.p0.p0.i32(ptr nonnull align 4 dereferenceable(8) %2, ptr align 4 dereferenceable(8) %1, i32 16, i1 false)
call void @llvm.lifetime.end.p0(i64 16, ptr nonnull %2)
call void @llvm.lifetime.end.p0(i64 16, ptr nonnull %1)
ret void
}

define void @replace_half_memcpy_test() #0 {
; CHECK-LABEL: define void @replace_half_memcpy_test(
; CHECK-SAME: ) #[[ATTR0]] {
; CHECK-NEXT: [[TMP1:%.*]] = alloca [2 x half], align 2
; CHECK-NEXT: [[TMP2:%.*]] = alloca [2 x half], align 2
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 4, ptr nonnull [[TMP1]])
; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 4, ptr nonnull [[TMP2]])
; CHECK-NEXT: [[GEP:%.*]] = getelementptr half, ptr [[TMP1]], i32 0
; CHECK-NEXT: [[TMP3:%.*]] = load half, ptr [[GEP]], align 2
; CHECK-NEXT: [[GEP1:%.*]] = getelementptr half, ptr [[TMP2]], i32 0
; CHECK-NEXT: store half [[TMP3]], ptr [[GEP1]], align 2
; CHECK-NEXT: [[GEP2:%.*]] = getelementptr half, ptr [[TMP1]], i32 1
; CHECK-NEXT: [[TMP4:%.*]] = load half, ptr [[GEP2]], align 2
; CHECK-NEXT: [[GEP3:%.*]] = getelementptr half, ptr [[TMP2]], i32 1
; CHECK-NEXT: store half [[TMP4]], ptr [[GEP3]], align 2
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 4, ptr nonnull [[TMP2]])
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 4, ptr nonnull [[TMP1]])
; CHECK-NEXT: ret void
;
%1 = alloca [2 x half], align 2
%2 = alloca [2 x half], align 2
call void @llvm.lifetime.start.p0(i64 4, ptr nonnull %1)
call void @llvm.lifetime.start.p0(i64 4, ptr nonnull %2)
call void @llvm.memcpy.p0.p0.i32(ptr nonnull align 2 dereferenceable(4) %2, ptr align 2 dereferenceable(4) %1, i32 4, i1 false)
call void @llvm.lifetime.end.p0(i64 4, ptr nonnull %2)
call void @llvm.lifetime.end.p0(i64 4, ptr nonnull %1)
ret void
}

attributes #0 = {"hlsl.export"}


declare void @llvm.lifetime.end.p0(i64 immarg, ptr captures(none))
declare void @llvm.lifetime.start.p0(i64 immarg, ptr captures(none))
declare void @llvm.memcpy.p0.p2.i32(ptr noalias, ptr addrspace(2) noalias readonly, i32, i1)
declare void @llvm.memcpy.p0.p0.i32(ptr noalias, ptr noalias readonly, i32, i1)