This repository contains PyTorch implementation of the following paper: Stoimchev, M., Kocev, D., Džeroski. S., "Deep network architectures as feature extractors for multi-label classification of remote sensing images"
- Python3
- PyTorch
- Torchvision
- Numpy
- Albumentations
- scikit-learn
- timm
- iterative-stratification
- First clone the repository
git clone https://github.com/Marjan1111/RSMLC.git - Create the virtual environment via conda
conda create -n tpa python=3.9 - Activate the virtual environment.
conda activate rsmlc - Install the dependencies.
pip install -r requirements.txt
To list the arguments, run the following command:
python main.py -h
python main.py \
--dataset UCM \
--mode True \
--n_epochs 100 \
--batch_size 64 \
--seed 42 \
--lr 1e-4 \
--feature_type FineTune \
To start the tree ensemble methods, run the following command:
python inference_tree.py
rs_datasets
├── UCMerced_LandUse
│ ├── Images
| ├── LandUseMultilabeled.txt
|
├── Ankara
| ├── AnkaraHSIArchive
| ├── multilabel.txt
|
├── DFC_15
| ├── images_train
| ├── images_test
| ├── multilabel.txt
|
├── MLRSNet
| ├── Images
| ├── Labels
|
├── AID_Dataset
| ├── images
| ├── multilabel.txt
|
├── BEN_Dataset
| ├── images
| ├── multi_hot_labels_19.txt
| ├── multi_hot_labels_43.txt
@Article{rs15020538,
AUTHOR = {Stoimchev, Marjan and Kocev, Dragi and Džeroski, Sašo},
TITLE = {Deep Network Architectures as Feature Extractors for Multi-Label Classification of Remote Sensing Images},
JOURNAL = {Remote Sensing},
VOLUME = {15},
YEAR = {2023},
NUMBER = {2},
ARTICLE-NUMBER = {538},
URL = {https://www.mdpi.com/2072-4292/15/2/538},
ISSN = {2072-4292},
DOI = {10.3390/rs15020538}
}