Skip to content

mbari-org/aidata

Repository files navigation

MBARI semantic-release License Python

mbari-aidata is a command line tool to do extract, transform, load and download operations on AI data for a number of projects at MBARI that require detection, clustering or classification workflows.

More documentation and examples are available at https://docs.mbari.org/internal/ai/data.

🚀 Features

  • 🧠 Object Detection/Clustering Integration: Loads detection/classification/clustering output from SDCAT formatted results.
  • Flexible Data Export: Downloads from Tator into machine learning formats like COCO, CIFAR, or PASCAL VOC.
  • Real-Time Uploads: Pushes localizations to Tator via Redis queues for real-time workflows.
  • Metadata Extraction: Parses images metadata such as GPS/time/date through a plugin-based system (extractors).
  • Duplicate Detection & flexible media references: Supports duplicate media load checks with the --check-duplicates flag.
  • Images or video are made accessible through a web server without needing to upload or move them from your internal NFS project mounts (e.g. Thalassa)
  • Augmentation Support: Augment VOC datasets with Albumentations to boost your object detection model performance. See examples in the docs.

Requirements

  • Python 3.10 or higher
  • A Tator API token and (optional) Redis password for the .env file. Contact the MBARI AI team for access.
  • 🐳Docker for development and testing only, but it can also be used instead of a local Python installation.
  • For local installation, you will need to install the required Python packages listed in the requirements.txt file, ffmpeg, and the mp4dump tool from https://www.bento4.com/

📦 Installation

Install as a Python package:

pip install mbari-aidata

Create the .env file with the following contents in the root directory of the project:

TATOR_TOKEN=your_api_token
REDIS_PASSWORD=your_redis_password
ENVIRONMENT=testing or production

Create a configuration file in the root directory of the project:

touch config_cfe.yaml

Or, use the project specific configuration from our docs server at https://docs.mbari.org/internal/ai/projects/

This file will be used to configure the project data, such as mounts, plugins, and database connections.

aidata download --version Baseline --labels "Diatoms, Copepods" --config https://docs.mbari.org/internal/ai/projects/uav-901902/config_uav.yml

⚙️Example configuration file:

# config_cfe.yml
# Config file for CFE project production
mounts:
  - name: "image"
    path: "/mnt/CFElab"
    host: "https://mantis.shore.mbari.org"
    nginx_root: "/CFElab"

  - name: "video"
    path: "/mnt/CFElab"
    host: "https://mantis.shore.mbari.org"
    nginx_root: "/CFElab"


plugins:
  - name: "extractor"
    module: "mbari_aidata.plugins.extractors.tap_cfe_media"
    function: "extract_media"

redis:
  host: "doris.shore.mbari.org"
  port: 6382

vss:
  project: "902111-CFE"
  model: "google/vit-base-patch16-224"

tator:
  project: "902111-CFE"
  host: "https://mantis.shore.mbari.org"
  image:
    attributes:
      iso_datetime: #<-------Required for images
        type: datetime
      depth:
        type: float
  video:
    attributes:
      iso_start_datetime:  #<-------Required for videos
        type: datetime
  box:
    attributes:
      Label:
        type: string
      score:
        type: float
      cluster:
        type: string
      saliency:
        type: float
      area:
        type: int
      exemplar:
        type: bool

🐳 Docker usage

A docker version is also available at mbari/aidata:latest or mbari/aidata:latest:cuda-124. For example, to download data using the docker image:

docker run -it --rm -v $(pwd):/mnt mbari/aidata:latest aidata download --version Baseline --labels "Diatoms, Copepods" --config config_cfe.yml

Commands

  • aidata download --help - Download data, such as images, boxes, into various formats for machine learning e.g. COCO, CIFAR, or PASCAL VOC format. Augmentation supported for VOC exported data using Albumentations.
  • aidata load --help - Load data, such as images, boxes, or clusters into either a Postgres or REDIS database
  • aidata db --help - Commands related to database management
  • aidata transform --help - Commands related to transforming downloaded data
  • aidata -h - Print help message and exit.

Source code is available at github.com/mbari-org/aidata.

Development

See the Development Guide for more information on how to set up the development environment or the justfile

🗓️ Last updated: 2025-06-13

About

Extract, transform, and load/download media and annotations for detection, clustering or classification workflows. https://docs.mbari.org/internal/ai/data

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •