Skip to content

fix(atenlib): combine cross_entropy_loss #555

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 8 additions & 22 deletions onnxscript/function_libs/torch_aten/ops/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ def aten_conv_depthwise3d(
raise NotImplementedError()


@torch_op("aten::cross_entropy_loss", trace_only=True)
@torch_op("aten::cross_entropy_loss")
def aten_cross_entropy_loss(
self: TFloatOrBFloat16,
target: Sequence[int],
Expand All @@ -251,30 +251,16 @@ def aten_cross_entropy_loss(
"""cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, float label_smoothing=0.0) -> Tensor"""

if reduction == 0: # "none"
result = _aten_cross_entropy_loss_onnx(self, target, weight, "none", ignore_index)
elif reduction == 1: # "mean"
result = _aten_cross_entropy_loss_onnx(self, target, weight, "mean", ignore_index)
else: # "sum"
result = _aten_cross_entropy_loss_onnx(self, target, weight, "sum", ignore_index)

return result


@torch_op("aten::cross_entropy_loss", private=True)
def _aten_cross_entropy_loss_onnx(
self: TFloatOrBFloat16,
target: Sequence[int],
weight: Optional[TFloatOrBFloat16],
reduction_str: str,
ignore_index: int,
):
if op.OptionalHasElement(weight):
result, _ = op.SoftmaxCrossEntropyLoss(
self, target, weight, reduction=reduction_str, ignore_index=ignore_index
self, target, weight, reduction="none", ignore_index=ignore_index
)
else:
elif reduction == 2: # "sum"
result, _ = op.SoftmaxCrossEntropyLoss(
self, target, weight, reduction="sum", ignore_index=ignore_index
)
else: # "mean", default
result, _ = op.SoftmaxCrossEntropyLoss(
self, target, reduction=reduction_str, ignore_index=ignore_index
self, target, weight, reduction="mean", ignore_index=ignore_index
)

return result
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -486,6 +486,11 @@ def _where_input_wrangler(
"nn.functional.adaptive_avg_pool2d": nn_ops.aten_adaptive_avg_pool2d,
"nn.functional.adaptive_avg_pool3d": nn_ops.aten_adaptive_avg_pool3d,
"nn.functional.celu": nn_ops.aten_celu,
# use cross_entropy as test case instead of cross_entropy_loss (not in OPS_DB)
"nn.functional.cross_entropy": (
nn_ops.aten_cross_entropy_loss,
_cross_entropy_input_wrangler,
),
"nn.functional.dropout": (core_ops.aten_dropout, _dropout_input_wrangler),
"nn.functional.elu": nn_ops.aten_elu,
"nn.functional.embedding": (core_ops.aten_embedding, _embedding_input_wrangler),
Expand Down Expand Up @@ -566,11 +571,6 @@ def _where_input_wrangler(
"nn.functional.conv1d": core_ops.aten_conv1d,
"nn.functional.conv2d": core_ops.aten_conv2d,
"nn.functional.conv3d": core_ops.aten_conv3d,
# use cross_entropy as test case instead of cross_entropy_loss (not in OPS_DB)
"nn.functional.cross_entropy": (
nn_ops.aten_cross_entropy_loss,
_cross_entropy_input_wrangler,
),
"nn.functional.gelu": nn_ops.aten_gelu,
"nn.functional.linear": nn_ops.aten_linear,
"nn.functional.upsample_nearest2d": (
Expand Down
8 changes: 7 additions & 1 deletion onnxscript/values.py
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,13 @@ def param_schemas(self) -> tuple[ParamSchema, ...]:
# args with default value are attributes
schemas = []
for arg in inputs:
param_schema = ParamSchema(name=arg.name, type=arg.typeinfo, is_input=True)
if isinstance(arg.typeinfo, onnx.TypeProto.Optional):
required = False
else:
required = True
param_schema = ParamSchema(
name=arg.name, type=arg.typeinfo, is_input=True, required=required
)
schemas.append(param_schema)

for attr_name in attributes:
Expand Down