Skip to content

aten::var implementation and aten::roll complex support #1186

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Nov 30, 2023
Merged
110 changes: 108 additions & 2 deletions onnxscript/function_libs/torch_lib/ops/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -6925,6 +6925,37 @@ def aten_roll(self: TTensor, shifts: INT64, dims: Sequence[int] = ()) -> TTensor
return result


@torch_op("aten::roll", trace_only=True, complex=True)
def aten_roll_complex(self: TTensor, shifts: INT64, dims: Sequence[int] = ()) -> TTensor:
"""roll(Tensor self, int[1] shifts, int[1] dims=[]) -> Tensor"""

self_rank = len(self.shape)
if self_rank == 1:
return self

if self.shape[0] == 0: # empty tensor
return self

self_real = op.Slice(self, [0], [1], axes=[-1])
self_imag = op.Slice(self, [1], [2], axes=[-1])
if not dims:
# assert isinstance(shifts, int)
shift_real = _aten_roll_shift_no_dim_onnx(self_real, shifts)
shift_imag = _aten_roll_shift_no_dim_onnx(self_imag, shifts)

result = op.Concat(shift_real, shift_imag, axis=-1)

else:
# assert len(shifts) == len(dims), but shifts is a tensor, dims is a list
for i, dim in enumerate(dims):
shift = op.Gather(shifts, i, axis=0)
self_real = _aten_roll_shift_and_dim_onnx(self_real, shift, dim)
self_imag = _aten_roll_shift_and_dim_onnx(self_imag, shift, dim)

result = op.Concat(self_real, self_imag, axis=-1)
return result


@torch_op("aten::roll", private=True)
def _aten_roll_shift_no_dim_onnx(self: TTensor, shift: INT64) -> TTensor:
neg_1 = op.Constant(value_ints=[-1])
Expand Down Expand Up @@ -8266,10 +8297,47 @@ def aten_vander(
raise NotImplementedError()


def aten_var(self: TensorType, unbiased: bool = True) -> TensorType:
@torch_op("aten::var", trace_only=True)
def aten_var(self: TReal, unbiased: Optional[bool] = True) -> TReal:
"""var(Tensor self, bool unbiased=True) -> Tensor"""

raise NotImplementedError()
# Assume bool(True) and int(1) are same in ONNX, so pass "unbiased" directly as "correction"
# If not this case, should be explicitly set correction value according to unbiased value
return _aten_var_onnx(self, correction=float(unbiased), keepdim=False)


@torch_op("aten::var.dim", trace_only=True)
def aten_var_dim(
self: TReal, dim: int, unbiased: Optional[bool] = True, keepdim: Optional[bool] = False
) -> TReal:
"""var(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor"""

if isinstance(dim, int):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

dim could be something else? Should we annotate it on function sig?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I can follow up on this after #1192. I believe this code is just copied from var_mean

dim = (dim,)
dim_tensor = op.Constant(value_ints=dim)
return _aten_var_dim_onnx(self, dim_tensor, correction=float(unbiased), keepdim=keepdim)


@torch_op("aten::var.correction", trace_only=True)
def aten_var_correction(
self: TReal,
dim: Optional[int] = None,
correction: Optional[float] = None,
keepdim: bool = False,
) -> TReal:
"""var.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor"""

if correction is None:
correction = 1.0

if dim is None:
var = _aten_var_onnx(self, correction, keepdim)
else:
if isinstance(dim, int):
dim = (dim,)
dim_tensor = op.Constant(value_ints=dim)
var = _aten_var_dim_onnx(self, dim_tensor, correction, keepdim)
return var


@torch_op("aten::var_mean", trace_only=True)
Expand Down Expand Up @@ -8361,6 +8429,44 @@ def _aten_var_mean_dim_onnx(
return var, mean


@torch_op("aten::var", private=True, traceable=True)
def _aten_var_onnx(self: TReal, correction: float, keepdim: bool = False) -> TReal:
mean = op.ReduceMean(self, keepdims=keepdim)
sub_mean = op.Sub(self, mean)
sqr_mean = op.Mul(sub_mean, sub_mean)
var = op.ReduceMean(sqr_mean, keepdims=keepdim)
# Adjust var according to correction value
if correction > 0.0:
self_shape = op.Shape(self)
numel_float = op.CastLike(op.ReduceProd(self_shape, keepdims=False), self)
mul = op.Mul(var, numel_float)
sub = op.Sub(numel_float, op.CastLike(correction, self))
var = op.Div(mul, sub)

return var


@torch_op("aten::var.dim", private=True, traceable=True)
def _aten_var_dim_onnx(
self: TReal, dim: INT64, correction: float, keepdim: bool = False
) -> TReal:
dim = op.Reshape(dim, op.Constant(value_ints=[-1]))
# Computer mean and var
sub_mean = op.Sub(self, op.ReduceMean(self, dim, keepdims=True))
sqr_mean = op.Mul(sub_mean, sub_mean)
var = op.ReduceMean(sqr_mean, dim, keepdims=keepdim)
# Adjust var according to correction value
if correction > 0.0:
self_shape = op.Shape(self)
dim_size = op.Gather(self_shape, dim, axis=0)
numel_float = op.CastLike(op.ReduceProd(dim_size, keepdims=False), self)
mul = op.Mul(var, numel_float)
sub = op.Sub(numel_float, correction)
var = op.Div(mul, sub)

return var


def aten_vdot(self: TensorType, other: TensorType) -> TensorType:
"""vdot(Tensor self, Tensor other) -> Tensor"""

Expand Down
38 changes: 38 additions & 0 deletions onnxscript/tests/function_libs/torch_lib/ops_test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -2075,6 +2075,13 @@ def _where_input_wrangler(
trace_only=True,
input_wrangler=_roll_input_wrangler,
),
TorchLibOpInfo(
"roll",
core_ops.aten_roll_complex,
input_wrangler=_roll_input_wrangler,
trace_only=True,
complex=True,
),
TorchLibOpInfo(
"scatter_reduce",
core_ops.aten_scatter_reduce,
Expand Down Expand Up @@ -2182,6 +2189,36 @@ def _where_input_wrangler(
matcher=lambda sample: len(sample.args) > 0 or "correction" not in sample.kwargs,
reason="this Aten overload only support when correction attribute exists",
),
TorchLibOpInfo(
"var",
core_ops.aten_var,
trace_only=True,
).xfail(
# kwargs must be empty
matcher=lambda sample: len(sample.kwargs) > 0,
reason="this Aten overload only support input[0]=tensor and input[1]=bool as input without any kwargs",
),
TorchLibOpInfo(
"var_dim",
core_ops.aten_var_dim,
trace_only=True,
).xfail(
# kwargs["dim"] must exist, kwargs["correction"] must not exist
matcher=lambda sample: not (
sample.kwargs.get("dim", None) is not None
and sample.kwargs.get("correction", None) is None
),
reason="this Aten overload only support with 'dim' argument and without 'correction' argument",
),
TorchLibOpInfo(
"var_correction",
core_ops.aten_var_correction,
trace_only=True,
).skip(
# Don't accept input[1]=bool and 'correction' must be in kwargs
matcher=lambda sample: len(sample.args) > 0 or "correction" not in sample.kwargs,
reason="this Aten overload only support when correction attribute exists",
),
TorchLibOpInfo("zeros_like", core_ops.aten_zeros_like, trace_only=True),
)

Expand Down Expand Up @@ -2279,6 +2316,7 @@ def _where_input_wrangler(
ops_test_common.duplicate_opinfo(OPS_DB, "round", ("round_decimals",))
ops_test_common.duplicate_opinfo(OPS_DB, "squeeze", ("squeeze_dim",))
ops_test_common.duplicate_opinfo(OPS_DB, "var_mean", ("var_mean_dim", "var_mean_correction"))
ops_test_common.duplicate_opinfo(OPS_DB, "var", ("var_dim", "var_correction"))
ops_test_common.duplicate_opinfo(OPS_DB, "view_as_complex", ("view_as_complex_copy",))
ops_test_common.duplicate_opinfo(OPS_DB, "view_as_real", ("view_as_real_copy",))

Expand Down