Skip to content

Annotate script() with ParamSpec for more accurate typing #2178

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 10, 2025

Conversation

justinchuby
Copy link
Collaborator

@justinchuby justinchuby commented Apr 10, 2025

This pull request introduces type parameterization using TypeVar and ParamSpec to enhance type safety and flexibility in the onnxscript module.

Type Parameterization Enhancements:

  • onnxscript/main.py: Introduced _R and _P type variables, and updated the script decorator and transform function signatures to use Callable[_P, _R] for better type inference. [1] [2] [3]
  • onnxscript/values.py: Added Generic, TypeVar, and ParamSpec imports, and updated the OnnxFunction class to inherit from Generic[_P, _R]. Modified the __call__ method to use _P.args and _P.kwargs for improved type checking. [1] [2] [3]

Copy link
Contributor

@Copilot Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copilot reviewed 2 out of 2 changed files in this pull request and generated no comments.

Comments suppressed due to low confidence (1)

onnxscript/values.py:581

  • Consider investigating the underlying type mismatch that necessitates the type ignore directive. Addressing the root cause may allow for a more robust and type-safe solution.
return evaluator.default().eval_function(self, args, kwargs)  # type: ignore[return-value]

Copy link

codecov bot commented Apr 10, 2025

❌ 4 Tests Failed:

Tests completed Failed Passed Skipped
14114 4 14110 1697
View the top 3 failed test(s) by shortest run time
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0118_test_bitwise_and_i32_2d
Stack Traces | 0.005s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.10.11\x64\lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_bitwise_and_i32_2d'

The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_bitwise_and_i32_2d' (e=No module named 'tests.onnx_backend_test_code.test_bitwise_and_i32_2d') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_bitwise_and_i32_2d.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_bitwise_and_i32_2d.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import INT32
E   from onnxscript.onnx_opset import opset18
E   
E   @script()
E   def bck_test_bitwise_and_i32_2d(x: INT32[3,4], y: INT32[3,4]) -> (INT32[3,4]):
E       bitwiseand = opset18.BitwiseAnd(x, y)
E       return bitwiseand
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0125_test_ai_onnx_ml_tree_ensemble_set_membership
Stack Traces | 0.008s run time
onnxscript/converter.py:467: in _eval_constant_expr
    return eval(cpl, self.globals, locals)  # pylint: disable=eval-used
E   NameError: name 'nan' is not defined

The above exception was the direct cause of the following exception:
..../test_ort_nightly/lib/python3.11.../site-packages/parameterized/parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript/backend/onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript/backend/onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
.../Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/importlib/__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
<frozen importlib._bootstrap>:1204: in _gcd_import
    ???
<frozen importlib._bootstrap>:1176: in _find_and_load
    ???
<frozen importlib._bootstrap>:1147: in _find_and_load_unlocked
    ???
<frozen importlib._bootstrap>:690: in _load_unlocked
    ???
..../test_ort_nightly/lib/python3.11.../_pytest/assertion/rewrite.py:185: in exec_module
    exec(co, module.__dict__)
tests/onnx_backend_test_code/test_ai_onnx_ml_tree_ensemble_set_membership.py:9: in <module>
    @script()
onnxscript/main.py:95: in transform
    result = script_check(f_ast, opset, env, src, default_opset=default_opset)
onnxscript/main.py:39: in script_check
    return convert.translate_function_def(f)
onnxscript/converter.py:1459: in translate_function_def
    fn_ir = self._translate_function_def_common(stmt)
onnxscript/converter.py:1446: in _translate_function_def_common
    self._translate_stmt(s, index_of_stmt=i)
onnxscript/converter.py:968: in _translate_stmt
    return self._translate_assign_stmt(node)
onnxscript/converter.py:1055: in _translate_assign_stmt
    assign(lhs, rhs)
onnxscript/converter.py:999: in assign
    t = self._translate_expr(rhs, lhs).name
onnxscript/converter.py:553: in _translate_expr
    r = self._translate_call_expr(node)
onnxscript/converter.py:832: in _translate_call_expr
    attrs = [
onnxscript/converter.py:833: in <listcomp>
    self._translate_attr(x, y, callee.op_schema.attributes[x])
onnxscript/converter.py:517: in _translate_attr
    val = self._eval_constant_expr(expr)
onnxscript/converter.py:469: in _eval_constant_expr
    raise NameError(
E   NameError: ERROR: Missing names, globals contains ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '__cached__', '__builtins__', '@py_builtins', '@pytest_ar', 'numpy', 'TensorProto', 'make_tensor', 'script', 'external_tensor', 'Opset', 'FLOAT', 'ai_onnx_ml5'], locals [].
E   at: Function 'bck_test_ai_onnx_ml_tree_ensemble_set_membership', line 3
E       Y = ai_onnx_ml5.TreeEnsemble(X, aggregate_function=1, leaf_targetids=[0, 1, 2, 3], leaf_weights=make_tensor("value", 1, dims=[4], vals=[1.0, 10.0, 1000.0, 100.0]), membership_values=make_tensor("value", 1, dims=[8], vals=[1.2000000476837158, 3.700000047683716, 8.0, 9.0, nan, 12.0, 7.0, nan]), n_targets=4, nodes_falseleafs=[1, 0, 1], nodes_falsenodeids=[2, 2, 3], nodes_featureids=[0, 0, 0], nodes_modes=make_tensor("value", 2, dims=[3], vals=[0, 6, 6]), nodes_splits=make_tensor("value", 1, dims=[3], vals=[11.0, 232344.0, nan]), nodes_trueleafs=[0, 1, 1], nodes_truenodeids=[1, 0, 1], post_transform=0, tree_roots=[0])
E                                                                                                                                                                                             ^
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0905_test_reduce_sum_do_not_keepdims_random
Stack Traces | 0.008s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.10.11\x64\lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_reduce_sum_do_not_keepdims_random'

The above exception was the direct cause of the following exception:
.nox\test\lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_reduce_sum_do_not_keepdims_random' (e=No module named 'tests.onnx_backend_test_code.test_reduce_sum_do_not_keepdims_random') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_sum_do_not_keepdims_random.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_sum_do_not_keepdims_random.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT, INT64
E   from onnxscript.onnx_opset import opset13
E   
E   @script()
E   def bck_test_reduce_sum_do_not_keepdims_random(data: FLOAT[3,2,2], axes: INT64[1]) -> (FLOAT[3,2]):
E       reduced = opset13.ReduceSum(data, axes, keepdims=0)
E       return reduced

To view more test analytics, go to the Test Analytics Dashboard
📋 Got 3 mins? Take this short survey to help us improve Test Analytics.

@justinchuby justinchuby enabled auto-merge (squash) April 10, 2025 19:54
@justinchuby justinchuby merged commit 8f71f1a into main Apr 10, 2025
23 of 29 checks passed
@justinchuby justinchuby deleted the justinchu/param-spec branch April 10, 2025 20:28
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
Development

Successfully merging this pull request may close these issues.

2 participants