Skip to content

Update constant fold to use correct numpy type #2204

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 15, 2025

Conversation

justinchuby
Copy link
Collaborator

@justinchuby justinchuby commented Apr 15, 2025

In PyTorch<=2.7, the numpy arrays for bfloat16 and float8 types have dtypes UINT16 and UINT8, which leads to incorrect constant folded graphs. This PR updates the numpy helper to cast the arrays to the correct dtypes.

Fix #2187

Copy link

codecov bot commented Apr 15, 2025

❌ 6 Tests Failed:

Tests completed Failed Passed Skipped
14126 6 14120 1698
View the top 3 failed test(s) by shortest run time
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0640_test_max_uint32
Stack Traces | 0.003s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_max_uint32'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_max_uint32' (e=No module named 'tests.onnx_backend_test_code.test_max_uint32') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_max_uint32.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_max_uint32.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import UINT32
E   from onnxscript.onnx_opset import opset13
E   
E   @script()
E   def bck_test_max_uint32(data_0: UINT32[3], data_1: UINT32[3]) -> (UINT32[3]):
E       result = opset13.Max(data_0, data_1)
E       return result
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_1184_test_squeeze_negative_axes
Stack Traces | 0.003s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_squeeze_negative_axes'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_squeeze_negative_axes' (e=No module named 'tests.onnx_backend_test_code.test_squeeze_negative_axes') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_squeeze_negative_axes.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_squeeze_negative_axes.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT, INT64
E   from onnxscript.onnx_opset import opset21
E   
E   @script()
E   def bck_test_squeeze_negative_axes(x: FLOAT[1,3,1,5], axes: INT64[1]) -> (FLOAT[1,3,5]):
E       y = opset21.Squeeze(x, axes)
E       return y
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_1262_test_triu_square_neg
Stack Traces | 0.003s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_triu_square_neg'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_triu_square_neg' (e=No module named 'tests.onnx_backend_test_code.test_triu_square_neg') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_triu_square_neg.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_triu_square_neg.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import INT64
E   from onnxscript.onnx_opset import opset14
E   
E   @script()
E   def bck_test_triu_square_neg(x: INT64[2,3,3], k: INT64) -> (INT64[2,3,3]):
E       y = opset14.Trilu(x, k)
E       return y

To view more test analytics, go to the Test Analytics Dashboard
📋 Got 3 mins? Take this short survey to help us improve Test Analytics.

Copy link
Contributor

@Copilot Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copilot reviewed 1 out of 1 changed files in this pull request and generated no comments.

Comments suppressed due to low confidence (1)

onnxscript/optimizer/_constant_folding.py:302

  • [nitpick] Consider verifying that the underlying numpy array is contiguous before applying .view(), as non-contiguous arrays might trigger unexpected behavior.
array = const_value.numpy().view(const_value.dtype.numpy())

@justinchuby justinchuby enabled auto-merge (squash) April 15, 2025 16:07
@justinchuby justinchuby merged commit 4905bfd into main Apr 15, 2025
25 of 29 checks passed
@justinchuby justinchuby deleted the justinchu/type-in-np-fold branch April 15, 2025 23:12
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
Development

Successfully merging this pull request may close these issues.

Optimizer constant folding turns bfloat16 initializers into UINT16
2 participants