Skip to content

Add support for a non-backtracking version of pattern disjunction #2242

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
May 1, 2025

Conversation

gramalingam
Copy link
Collaborator

Several fusions need to support multiple variants of a pattern (such as the optional presence of an Add or some such op). This PR adds support for a non-backtracking version of pattern disjunction. We can now use an "Or" between variants such as "Add(...)" and "MatMul(...)", for example.

Supporting unrestricted Or patterns is more complicated, since failure of one alternative will require backtracking, which will require unbinding any bindings added during the unsuccessful partial search. (We can consider that later, if it seems useful.)

Copy link

codecov bot commented Apr 29, 2025

❌ 4 Tests Failed:

Tests completed Failed Passed Skipped
15190 4 15186 2522
View the top 3 failed test(s) by shortest run time
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0460_test_hardmax_default_axis
Stack Traces | 0.005s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_hardmax_default_axis'

The above exception was the direct cause of the following exception:
.nox\test_ort_nightly\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_hardmax_default_axis' (e=No module named 'tests.onnx_backend_test_code.test_hardmax_default_axis') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_default_axis.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_hardmax_default_axis.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT
E   from onnxscript.onnx_opset import opset13
E   
E   @script()
E   def bck_test_hardmax_default_axis(x: FLOAT[3,4,5]) -> (FLOAT[3,4,5]):
E       y = opset13.Hardmax(x)
E       return y
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_1230_test_top_k
Stack Traces | 0.005s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.12.10\x64\Lib\importlib\__init__.py:90: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_top_k'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_top_k' (e=No module named 'tests.onnx_backend_test_code.test_top_k') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_top_k.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_top_k.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT, INT64
E   from onnxscript.onnx_opset import opset11
E   
E   @script()
E   def bck_test_top_k(x: FLOAT[3,4], k: INT64[1]) -> (FLOAT[3,3], INT64[3,3]):
E       values, indices = opset11.TopK(x, k, axis=1)
E       return values, indices
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0336_test_clip_default_int8_max
Stack Traces | 0.006s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.11.9\x64\Lib\importlib\__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_clip_default_int8_max'

The above exception was the direct cause of the following exception:
.nox\test_torch_nightly\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_clip_default_int8_max' (e=No module named 'tests.onnx_backend_test_code.test_clip_default_int8_max') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_clip_default_int8_max.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_clip_default_int8_max.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import INT8
E   from onnxscript.onnx_opset import opset13
E   
E   @script()
E   def bck_test_clip_default_int8_max(x: INT8[3,4,5], max: INT8) -> (INT8[3,4,5]):
E       y = opset13.Clip(x, None, max)
E       return y

To view more test analytics, go to the Test Analytics Dashboard
📋 Got 3 mins? Take this short survey to help us improve Test Analytics.

Copy link
Contributor

@shubhambhokare1 shubhambhokare1 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks! This will be super useful in avoiding bloating the patterns with parameters. Just mentioning a couple clarifying questions.

Copy link
Collaborator

@justinchuby justinchuby left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Contributor

@shubhambhokare1 shubhambhokare1 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, will create a follow up PR converting some of the patterns in ort-fusion to utilize OrPatterns

@gramalingam gramalingam enabled auto-merge (squash) May 1, 2025 00:15
@gramalingam gramalingam merged commit 510fc28 into main May 1, 2025
22 of 27 checks passed
@gramalingam gramalingam deleted the rama/or-pattern branch May 1, 2025 00:32
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
Development

Successfully merging this pull request may close these issues.

3 participants