Skip to content

Refine shape optimization #2336

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
May 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion onnxscript/rewriter/_ir_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ def get_numpy_value(val: ir.Value | None) -> np.ndarray | None:
"""
if val is None:
return None
const_value = val.const_value
const_value = get_const_value(val)
if const_value is not None:
try:
return const_value.numpy()
Expand Down
1 change: 1 addition & 0 deletions onnxscript/rewriter/ort_fusions/_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ def _pre_optimize(model: ir.Model) -> ir.Model:
shape_inference.infer_shapes(model)
optimize(model)
shape_optimization.rules.apply_to_model(model)
optimize(model)
return model


Expand Down
32 changes: 24 additions & 8 deletions onnxscript/rewriter/ort_fusions/shape_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from __future__ import annotations

import onnxscript.ir as ir
import onnxscript.rewriter._ir_utils as _ir_utils
import onnxscript.rewriter.pattern as pattern


Expand All @@ -17,15 +18,19 @@
It can be simplified away.
"""

def pattern(self, op, x, dim0, dim1, dim2, dim3):
def pattern(self, op, x, dim0, dim1, dim2, dim3, start, end):
shape = op.Concat(dim0, dim1, dim2, dim3, axis=0)
reshaped = op.Reshape(x, shape, allowzero=0)
# Note: The allowzero=1 attribute enables us to infer that the shape of the
# reshaped tensor is the same as the value of the shape parameter below.
# Otherwise, we need to know that there are no zeros in the value of "shape"
# for this optimization to be valid.
reshaped = op.Reshape(x, shape, allowzero=1)
transposed = op.Transpose(reshaped, perm=[0, 2, 1, 3])
final_shape = op.Shape(transposed, _outputs=["final_shape"], start=0)
final_dim = op.Slice(final_shape, [-2], [-1])
final_shape = op.Shape(transposed, _outputs=["final_shape"])
final_dim = op.Slice(final_shape, start, end)
return final_dim

def check(self, context, dim0, dim1, dim2, dim3, final_shape, **_) -> bool:
def check(self, context, dim0, dim1, dim2, dim3, final_shape, start, end, **_) -> bool:
# All of the dimensions should have shape [1]
for dim in (dim0, dim1, dim2, dim3):
if dim.shape is None or dim.shape.dims != (1,):
Expand All @@ -37,11 +42,22 @@
return False
if "start" in shape_node.attributes:
start_attr = shape_node.attributes["start"]
return isinstance(start_attr, ir.Attr) and start_attr.value == 0
if not (isinstance(start_attr, ir.Attr) and start_attr.value == 0):
return False

Check warning on line 46 in onnxscript/rewriter/ort_fusions/shape_optimization.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/rewriter/ort_fusions/shape_optimization.py#L46

Added line #L46 was not covered by tests
self._start_val = _ir_utils.get_singleton_value(start)
self._end_val = _ir_utils.get_singleton_value(end)
if self._start_val is None or self._end_val is None:
return False

Check warning on line 50 in onnxscript/rewriter/ort_fusions/shape_optimization.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/rewriter/ort_fusions/shape_optimization.py#L50

Added line #L50 was not covered by tests
return True

def rewrite(self, op, dim1, **_):
return dim1
def rewrite(self, op, dim0, dim1, dim2, dim3, **_):
transposed_dims = [dim0, dim2, dim1, dim3]
sliced_result = transposed_dims[self._start_val : self._end_val]
if len(sliced_result) == 0:
return op.Constant(value_ints=[])
if len(sliced_result) == 1:
return op.Identity(sliced_result[0])
return op.Concat(*sliced_result, axis=0)


rules = pattern.RewriteRuleSet([ExtractDim.rule()])
77 changes: 77 additions & 0 deletions onnxscript/rewriter/ort_fusions/shape_optimization_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import unittest

import numpy as np
import onnx
import parameterized

from onnxscript import FLOAT, INT64, ir, opset18, script
from onnxscript.rewriter.ort_fusions import shape_optimization


def _make_model(starts: list[int], ends: list[int]) -> onnx.ModelProto:
@script()
def model_script(
x: FLOAT["N"], # noqa: F821
dim0: INT64[1],
dim1: INT64[1],
dim2: INT64[1],
dim3: INT64[1],
) -> INT64["M"]: # noqa: F821
shape = opset18.Concat(dim0, dim1, dim2, dim3, axis=0)
reshaped = opset18.Reshape(x, shape, allowzero=1)
transposed = opset18.Transpose(reshaped, perm=[0, 2, 1, 3])
final_shape = opset18.Shape(transposed)
final_dim = opset18.Slice(final_shape, starts, ends)
return opset18.Add(final_dim, final_dim)

Check warning on line 27 in onnxscript/rewriter/ort_fusions/shape_optimization_test.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/rewriter/ort_fusions/shape_optimization_test.py#L22-L27

Added lines #L22 - L27 were not covered by tests

model_proto = model_script.to_model_proto()
return model_proto


# Example input data
_model_inputs = {
"x": np.zeros((24,), dtype=np.float32),
"dim0": np.array([2], dtype=np.int64),
"dim1": np.array([3], dtype=np.int64),
"dim2": np.array([4], dtype=np.int64),
"dim3": np.array([1], dtype=np.int64),
}


class ShapeOptimizationTest(unittest.TestCase):
@parameterized.parameterized.expand(
[
([0], [1], "singleton"),
([1], [3], "two_elements"),
([1], [-1], "negative_index"),
([-2], [1000], "out_of_bounds"),
([-200], [-1], "negative_out_of_bounds"),
([2], [2], "empty_slice"),
]
)
def test_shape_optimization(self, starts: list[int], ends: list[int], _name: str):
model_proto = _make_model(starts, ends)
model = ir.serde.deserialize_model(model_proto)

count = shape_optimization.rules.apply_to_model(model)
self.assertEqual(count, 1)
optimized_proto = ir.serde.serialize_model(model)

import onnxruntime as ort

sess = ort.InferenceSession(
model_proto.SerializeToString(), providers=["CPUExecutionProvider"]
)
outputs = sess.run(None, _model_inputs)
sess = ort.InferenceSession(
optimized_proto.SerializeToString(), providers=["CPUExecutionProvider"]
)
optimized_outputs = sess.run(None, _model_inputs)
for orig, opt in zip(outputs, optimized_outputs):
np.testing.assert_array_equal(orig, opt)


if __name__ == "__main__":
unittest.main()

Check warning on line 77 in onnxscript/rewriter/ort_fusions/shape_optimization_test.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/rewriter/ort_fusions/shape_optimization_test.py#L77

Added line #L77 was not covered by tests
Loading