Skip to content

[torchlib] Update linear implementation to support 1d weights #2340

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
May 26, 2025

Conversation

justinchuby
Copy link
Collaborator

It is possible when users call F.linear() directly in PyTorch.

It is possible when users call `F.linear()` directly in PyTorch.
Copy link
Contributor

@Copilot Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR updates the aten_linear implementation to handle cases where the weight tensor is 1-dimensional by unsqueezing it instead of transposing, while retaining existing behavior for 2D weights.

  • Add a branch for 1D weight tensors and use Unsqueeze
  • Keep assertion and transpose logic for 2D weight tensors
Comments suppressed due to low confidence (2)

onnxscript/function_libs/torch_lib/ops/nn.py:836

  • The transpose assignment is not indented under the else: block, so it always executes and overrides the 1D Unsqueeze path. It should be moved inside the else: scope.
weight_transposed = op.Transpose(weight, perm=[1, 0])

onnxscript/function_libs/torch_lib/ops/nn.py:831

  • [nitpick] The new branch for 1D weight handling isn’t covered by existing tests. Consider adding unit tests to verify behavior when weight is 1D.
if len(weight.shape) == 1:

@justinchuby justinchuby added the module: torchlib Related to the torch/aten function lib in development label May 25, 2025
Copy link

codecov bot commented May 25, 2025

❌ 3 Tests Failed:

Tests completed Failed Passed Skipped
15995 3 15992 1883
View the top 3 failed test(s) by shortest run time
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0829_test_reduce_l2_keep_dims_example
Stack Traces | 0.006s run time
onnxscript\backend\onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
C:\hostedtoolcache\windows\Python\3.12.10\x64\Lib\importlib\__init__.py:90: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
E   ModuleNotFoundError: No module named 'tests.onnx_backend_test_code.test_reduce_l2_keep_dims_example'

The above exception was the direct cause of the following exception:
.nox\test\Lib\site-packages\parameterized\parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript\backend\onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript\backend\onnx_export_test.py:139: in extract_functions
    raise AssertionError(
E   AssertionError: Unable to import 'tests.onnx_backend_test_code.test_reduce_l2_keep_dims_example' (e=No module named 'tests.onnx_backend_test_code.test_reduce_l2_keep_dims_example') (file: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_l2_keep_dims_example.py', absolute path: 'D:\\a\\onnxscript\\onnxscript\\tests\\onnx_backend_test_code\\test_reduce_l2_keep_dims_example.py', current folder: D:\a\onnxscript\onnxscript
E   ---- CONTENT --
E   import numpy
E   from onnx import TensorProto
E   from onnx.helper import make_tensor
E   from onnxscript import script, external_tensor
E   from onnxscript.values import Opset
E   from onnxscript.onnx_types import FLOAT, INT64
E   from onnxscript.onnx_opset import opset18
E   
E   @script()
E   def bck_test_reduce_l2_keep_dims_example(data: FLOAT[3,2,2], axes: INT64[1]) -> (FLOAT[3,2,1]):
E       reduced = opset18.ReduceL2(data, axes, keepdims=1)
E       return reduced
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0125_test_ai_onnx_ml_tree_ensemble_set_membership
Stack Traces | 0.007s run time
onnxscript/converter.py:460: in _eval_constant_expr
    return eval(cpl, self.globals, locals)  # pylint: disable=eval-used
E   NameError: name 'nan' is not defined

The above exception was the direct cause of the following exception:
..../test_ort_nightly/lib/python3.11.../site-packages/parameterized/parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript/backend/onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript/backend/onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
.../Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/importlib/__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
<frozen importlib._bootstrap>:1204: in _gcd_import
    ???
<frozen importlib._bootstrap>:1176: in _find_and_load
    ???
<frozen importlib._bootstrap>:1147: in _find_and_load_unlocked
    ???
<frozen importlib._bootstrap>:690: in _load_unlocked
    ???
..../test_ort_nightly/lib/python3.11.../_pytest/assertion/rewrite.py:185: in exec_module
    exec(co, module.__dict__)
tests/onnx_backend_test_code/test_ai_onnx_ml_tree_ensemble_set_membership.py:9: in <module>
    @script()
onnxscript/main.py:94: in transform
    result = script_check(f_ast, opset, env, src, default_opset=default_opset)
onnxscript/main.py:38: in script_check
    return convert.translate_function_def(f)
onnxscript/converter.py:1452: in translate_function_def
    fn_ir = self._translate_function_def_common(stmt)
onnxscript/converter.py:1439: in _translate_function_def_common
    self._translate_stmt(s, index_of_stmt=i)
onnxscript/converter.py:961: in _translate_stmt
    return self._translate_assign_stmt(node)
onnxscript/converter.py:1048: in _translate_assign_stmt
    assign(lhs, rhs)
onnxscript/converter.py:992: in assign
    t = self._translate_expr(rhs, lhs).name
onnxscript/converter.py:546: in _translate_expr
    r = self._translate_call_expr(node)
onnxscript/converter.py:825: in _translate_call_expr
    attrs = [
onnxscript/converter.py:826: in <listcomp>
    self._translate_attr(x, y, callee.op_schema.attributes[x])
onnxscript/converter.py:510: in _translate_attr
    val = self._eval_constant_expr(expr)
onnxscript/converter.py:462: in _eval_constant_expr
    raise NameError(
E   NameError: ERROR: Missing names, globals contains ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '__cached__', '__builtins__', '@py_builtins', '@pytest_ar', 'numpy', 'TensorProto', 'make_tensor', 'script', 'external_tensor', 'Opset', 'FLOAT', 'ai_onnx_ml5'], locals [].
E   at: Function 'bck_test_ai_onnx_ml_tree_ensemble_set_membership', line 3
E       Y = ai_onnx_ml5.TreeEnsemble(X, aggregate_function=1, leaf_targetids=[0, 1, 2, 3], leaf_weights=make_tensor("value", 1, dims=[4], vals=[1.0, 10.0, 1000.0, 100.0]), membership_values=make_tensor("value", 1, dims=[8], vals=[1.2000000476837158, 3.700000047683716, 8.0, 9.0, nan, 12.0, 7.0, nan]), n_targets=4, nodes_falseleafs=[1, 0, 1], nodes_falsenodeids=[2, 2, 3], nodes_featureids=[0, 0, 0], nodes_modes=make_tensor("value", 2, dims=[3], vals=[0, 6, 6]), nodes_splits=make_tensor("value", 1, dims=[3], vals=[11.0, 232344.0, nan]), nodes_trueleafs=[0, 1, 1], nodes_truenodeids=[1, 0, 1], post_transform=0, tree_roots=[0])
E                                                                                                                                                                                             ^
onnxscript.backend.onnx_export_test.TestOnnxBackEnd::test_export2python_produces_correct_onnx_script_model_0815_test_ai_onnx_ml_tree_ensemble_set_membership
Stack Traces | 0.017s run time
onnxscript/converter.py:460: in _eval_constant_expr
    return eval(cpl, self.globals, locals)  # pylint: disable=eval-used
E   NameError: name 'nan' is not defined

The above exception was the direct cause of the following exception:
..../test_ort_nightly/lib/python3.11.../site-packages/parameterized/parameterized.py:620: in standalone_func
    return func(*(a + p.args), **p.kwargs, **kw)
onnxscript/backend/onnx_export_test.py:271: in test_export2python_produces_correct_onnx_script_model
    functions = extract_functions(backend_test.name, code, self.test_folder)
onnxscript/backend/onnx_export_test.py:137: in extract_functions
    mod = importlib.import_module(import_name)
.../hostedtoolcache/Python/3.11.12.../x64/lib/python3.11/importlib/__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
<frozen importlib._bootstrap>:1204: in _gcd_import
    ???
<frozen importlib._bootstrap>:1176: in _find_and_load
    ???
<frozen importlib._bootstrap>:1147: in _find_and_load_unlocked
    ???
<frozen importlib._bootstrap>:690: in _load_unlocked
    ???
..../test_ort_nightly/lib/python3.11.../_pytest/assertion/rewrite.py:185: in exec_module
    exec(co, module.__dict__)
tests/onnx_backend_test_code/test_ai_onnx_ml_tree_ensemble_set_membership.py:9: in <module>
    @script()
onnxscript/main.py:94: in transform
    result = script_check(f_ast, opset, env, src, default_opset=default_opset)
onnxscript/main.py:38: in script_check
    return convert.translate_function_def(f)
onnxscript/converter.py:1452: in translate_function_def
    fn_ir = self._translate_function_def_common(stmt)
onnxscript/converter.py:1439: in _translate_function_def_common
    self._translate_stmt(s, index_of_stmt=i)
onnxscript/converter.py:961: in _translate_stmt
    return self._translate_assign_stmt(node)
onnxscript/converter.py:1048: in _translate_assign_stmt
    assign(lhs, rhs)
onnxscript/converter.py:992: in assign
    t = self._translate_expr(rhs, lhs).name
onnxscript/converter.py:546: in _translate_expr
    r = self._translate_call_expr(node)
onnxscript/converter.py:825: in _translate_call_expr
    attrs = [
onnxscript/converter.py:826: in <listcomp>
    self._translate_attr(x, y, callee.op_schema.attributes[x])
onnxscript/converter.py:510: in _translate_attr
    val = self._eval_constant_expr(expr)
onnxscript/converter.py:462: in _eval_constant_expr
    raise NameError(
E   NameError: ERROR: Missing names, globals contains ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '__cached__', '__builtins__', '@py_builtins', '@pytest_ar', 'numpy', 'TensorProto', 'make_tensor', 'script', 'external_tensor', 'Opset', 'FLOAT', 'ai_onnx_ml5'], locals [].
E   at: Function 'bck_test_ai_onnx_ml_tree_ensemble_set_membership', line 3
E       Y = ai_onnx_ml5.TreeEnsemble(X, aggregate_function=1, leaf_targetids=[0, 1, 2, 3], leaf_weights=make_tensor("value", 1, dims=[4], vals=[1.0, 10.0, 1000.0, 100.0]), membership_values=make_tensor("value", 1, dims=[8], vals=[1.2000000476837158, 3.700000047683716, 8.0, 9.0, nan, 12.0, 7.0, nan]), n_targets=4, nodes_falseleafs=[1, 0, 1], nodes_falsenodeids=[2, 2, 3], nodes_featureids=[0, 0, 0], nodes_modes=make_tensor("value", 2, dims=[3], vals=[0, 6, 6]), nodes_splits=make_tensor("value", 1, dims=[3], vals=[11.0, 232344.0, nan]), nodes_trueleafs=[0, 1, 1], nodes_truenodeids=[1, 0, 1], post_transform=0, tree_roots=[0])
E                                                                                                                                                                                             ^

To view more test analytics, go to the Test Analytics Dashboard
📋 Got 3 mins? Take this short survey to help us improve Test Analytics.

@justinchuby justinchuby added the merge at lgtm Reviewers can merge when they approve label May 25, 2025
@justinchuby justinchuby merged commit 8a742c0 into main May 26, 2025
25 of 29 checks passed
@justinchuby justinchuby deleted the justinchu/linear-1d-weight branch May 26, 2025 15:12
@justinchuby justinchuby linked an issue May 27, 2025 that may be closed by this pull request
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
merge at lgtm Reviewers can merge when they approve module: torchlib Related to the torch/aten function lib in development
Projects
Development

Successfully merging this pull request may close these issues.

[torchlib] aten_linear should handle inputs when they are 1d
2 participants