Skip to content

Added similarity calculation interface #361

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 16, 2012
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGES
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Since last release
==================

* ENH: Interface for WatershedBEM from the MNE software package
* ENH: New interfaces: nipy.Similarity, WatershedBEM

* FIX: Afni outputs should inherit from TraitedSpec

Expand Down
1 change: 1 addition & 0 deletions nipype/interfaces/nipy/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
from .model import FitGLM, EstimateContrast
from .preprocess import ComputeMask, FmriRealign4d
from .utils import Similarity
91 changes: 91 additions & 0 deletions nipype/interfaces/nipy/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import warnings

import nibabel as nb

from ...utils.misc import package_check

try:
package_check('nipy')
except Exception, e:
warnings.warn('nipy not installed')
else:
from nipy.algorithms.registration.histogram_registration import HistogramRegistration
from nipy.algorithms.registration.affine import Affine

from ..base import (TraitedSpec, BaseInterface, traits,
BaseInterfaceInputSpec, File, isdefined)


class SimilarityInputSpec(BaseInterfaceInputSpec):

volume1 = File(exists=True, desc="3D volume", mandatory=True)
volume2 = File(exists=True, desc="3D volume", mandatory=True)
mask1 = File(exists=True, desc="3D volume", mandatory=True)
mask2 = File(exists=True, desc="3D volume", mandatory=True)
metric = traits.Either(traits.Enum('cc', 'cr', 'crl1', 'mi', 'nmi', 'slr'),
traits.Callable(),
desc="""str or callable
Cost-function for assessing image similarity. If a string,
one of 'cc': correlation coefficient, 'cr': correlation
ratio, 'crl1': L1-norm based correlation ratio, 'mi': mutual
information, 'nmi': normalized mutual information, 'slr':
supervised log-likelihood ratio. If a callable, it should
take a two-dimensional array representing the image joint
histogram as an input and return a float.""", usedefault=True)


class SimilarityOutputSpec(TraitedSpec):

similarity = traits.Float(desc="Similarity between volume 1 and 2")


class Similarity(BaseInterface):
"""Calculates similarity between two 3D volumes. Both volumes have to be in
the same coordinate system, same space within that coordinate system and
with the same voxel dimensions.

Example
-------
>>> from nipype.interfaces.nipy.utils import Similarity
>>> similarity = Similarity()
>>> similarity.inputs.volume1 = 'rc1s1.nii'
>>> similarity.inputs.volume2 = 'rc1s2.nii'
>>> similarity.inputs.metric = 'cr'
>>> res = similarity.run() # doctest: +SKIP
"""

input_spec = SimilarityInputSpec
output_spec = SimilarityOutputSpec

def _run_interface(self, runtime):

vol1_nii = nb.load(self.inputs.volume1)
vol2_nii = nb.load(self.inputs.volume2)

if isdefined(self.inputs.mask1):
mask1_nii = nb.load(self.inputs.mask1)
mask1_nii = nb.Nifti1Image(nb.load(self.inputs.mask1).get_data() == 1, mask1_nii.get_affine(),
mask1_nii.get_header())
else:
mask1_nii = None

if isdefined(self.inputs.mask2):
mask2_nii = nb.load(self.inputs.mask2)
mask2_nii = nb.Nifti1Image(nb.load(self.inputs.mask2).get_data() == 1, mask2_nii.get_affine(),
mask2_nii.get_header())
else:
mask2_nii = None

histreg = HistogramRegistration(from_img = vol1_nii,
to_img = vol2_nii,
similarity=self.inputs.metric,
from_mask = mask1_nii,
to_mask = mask2_nii)
self._similarity = histreg.eval(Affine())

return runtime

def _list_outputs(self):
outputs = self._outputs().get()
outputs['similarity'] = self._similarity
return outputs