-
Notifications
You must be signed in to change notification settings - Fork 675
[Feature] Support RTMDet-Ins. #1662
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 3 commits
Commits
Show all changes
9 commits
Select commit
Hold shift + click to select a range
f73c3e2
[Feature] Support RTMDet-Ins.
RangiLyu 4c38aae
fix visualize
RangiLyu 3002058
fix rewrite trt
RangiLyu a4ec132
add config
RangiLyu f88a329
Merge branch 'dev-1.x' of github.com:open-mmlab/mmdeploy into rtmdet_ins
RangiLyu eaa0562
support torch 1.13
RangiLyu 14c3037
fix keep ratio resize
RangiLyu 040ef84
resolve scale factor bug
RangiLyu 5c903da
set to None
RangiLyu File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
17 changes: 17 additions & 0 deletions
17
configs/mmdet/instance-seg/instance-seg_tensorrt_static-640x640.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
_base_ = [ | ||
'../_base_/base_instance-seg_static.py', | ||
'../../_base_/backends/tensorrt.py' | ||
] | ||
|
||
onnx_config = dict(input_shape=(640, 640)) | ||
codebase_config = dict(post_processing=dict(export_postprocess_mask=True)) | ||
backend_config = dict( | ||
common_config=dict(max_workspace_size=1 << 30), | ||
model_inputs=[ | ||
dict( | ||
input_shapes=dict( | ||
input=dict( | ||
min_shape=[1, 3, 640, 640], | ||
opt_shape=[1, 3, 640, 640], | ||
max_shape=[1, 3, 640, 640]))) | ||
]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
305 changes: 305 additions & 0 deletions
305
mmdeploy/codebase/mmdet/models/dense_heads/rtmdet_ins_head.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from typing import List, Optional | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
from mmengine.config import ConfigDict | ||
from torch import Tensor | ||
|
||
from mmdeploy.codebase.mmdet import get_post_processing_params | ||
from mmdeploy.core import FUNCTION_REWRITER | ||
from mmdeploy.mmcv.ops import ONNXNMSop, TRTBatchedNMSop | ||
|
||
|
||
@FUNCTION_REWRITER.register_rewriter( | ||
func_name='mmdet.models.dense_heads.rtmdet_ins_head.' | ||
'RTMDetInsHead.predict_by_feat') | ||
def rtmdet_ins_head__predict_by_feat( | ||
self, | ||
cls_scores: List[Tensor], | ||
bbox_preds: List[Tensor], | ||
kernel_preds: List[Tensor], | ||
mask_feat: Tensor, | ||
score_factors: Optional[List[Tensor]] = None, | ||
batch_img_metas: Optional[List[dict]] = None, | ||
cfg: Optional[ConfigDict] = None, | ||
rescale: bool = False, | ||
with_nms: bool = True): | ||
"""Rewrite `predict_by_feat` of `RTMDet-Ins` for default backend. | ||
Rewrite this function to deploy model, transform network output for a | ||
batch into bbox predictions. | ||
Args: | ||
ctx: Context that contains original meta information. | ||
cls_scores (list[Tensor]): Classification scores for all | ||
scale levels, each is a 4D-tensor, has shape | ||
(batch_size, num_priors * num_classes, H, W). | ||
bbox_preds (list[Tensor]): Box energies / deltas for all | ||
scale levels, each is a 4D-tensor, has shape | ||
(batch_size, num_priors * 4, H, W). | ||
batch_img_metas (list[dict], Optional): Batch image meta info. | ||
Defaults to None. | ||
cfg (ConfigDict, optional): Test / postprocessing | ||
configuration, if None, test_cfg would be used. | ||
Defaults to None. | ||
rescale (bool): If True, return boxes in original image space. | ||
Defaults to False. | ||
with_nms (bool): If True, do nms before return boxes. | ||
Defaults to True. | ||
Returns: | ||
tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, | ||
where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch | ||
size and the score between 0 and 1. The shape of the second | ||
tensor in the tuple is (N, num_box), and each element | ||
represents the class label of the corresponding box. | ||
""" | ||
assert len(cls_scores) == len(bbox_preds) | ||
device = cls_scores[0].device | ||
cfg = self.test_cfg if cfg is None else cfg | ||
batch_size = bbox_preds[0].shape[0] | ||
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] | ||
mlvl_priors = self.prior_generator.grid_priors( | ||
featmap_sizes, device=device, with_stride=True) | ||
|
||
flatten_cls_scores = [ | ||
cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, | ||
self.cls_out_channels) | ||
for cls_score in cls_scores | ||
] | ||
flatten_bbox_preds = [ | ||
bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) | ||
for bbox_pred in bbox_preds | ||
] | ||
flatten_kernel_preds = [ | ||
kernel_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, | ||
self.num_gen_params) | ||
for kernel_pred in kernel_preds | ||
] | ||
flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() | ||
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) | ||
flatten_kernel_preds = torch.cat(flatten_kernel_preds, dim=1) | ||
priors = torch.cat(mlvl_priors) | ||
tl_x = (priors[..., 0] - flatten_bbox_preds[..., 0]) | ||
tl_y = (priors[..., 1] - flatten_bbox_preds[..., 1]) | ||
br_x = (priors[..., 0] + flatten_bbox_preds[..., 2]) | ||
br_y = (priors[..., 1] + flatten_bbox_preds[..., 3]) | ||
bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1) | ||
# directly multiply score factor and feed to nms | ||
max_scores, _ = torch.max(flatten_cls_scores, 1) | ||
mask = max_scores >= cfg.score_thr | ||
scores = flatten_cls_scores.where(mask, flatten_cls_scores.new_zeros(1)) | ||
|
||
ctx = FUNCTION_REWRITER.get_context() | ||
deploy_cfg = ctx.cfg | ||
post_params = get_post_processing_params(deploy_cfg) | ||
max_output_boxes_per_class = post_params.max_output_boxes_per_class | ||
iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) | ||
score_threshold = cfg.get('score_thr', post_params.score_threshold) | ||
pre_top_k = post_params.pre_top_k | ||
keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) | ||
mask_thr_binary = cfg.get('mask_thr_binary', 0.5) | ||
|
||
return _nms_with_mask_static(self, priors, bboxes, scores, | ||
flatten_kernel_preds, mask_feat, | ||
max_output_boxes_per_class, iou_threshold, | ||
score_threshold, pre_top_k, keep_top_k, | ||
mask_thr_binary) | ||
|
||
|
||
def _nms_with_mask_static(self, | ||
priors: Tensor, | ||
boxes: Tensor, | ||
scores: Tensor, | ||
kernels: Tensor, | ||
mask_feats: Tensor, | ||
max_output_boxes_per_class: int = 1000, | ||
iou_threshold: float = 0.5, | ||
score_threshold: float = 0.05, | ||
pre_top_k: int = -1, | ||
keep_top_k: int = -1, | ||
mask_thr_binary: float = 0.5): | ||
"""Wrapper for `multiclass_nms` with ONNXRuntime. | ||
Args: | ||
ctx (ContextCaller): The context with additional information. | ||
boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4]. | ||
scores (Tensor): The detection scores of shape | ||
[N, num_boxes, num_classes]. | ||
max_output_boxes_per_class (int): Maximum number of output | ||
boxes per class of nms. Defaults to 1000. | ||
iou_threshold (float): IOU threshold of nms. Defaults to 0.5. | ||
score_threshold (float): score threshold of nms. | ||
Defaults to 0.05. | ||
pre_top_k (int): Number of top K boxes to keep before nms. | ||
Defaults to -1. | ||
keep_top_k (int): Number of top K boxes to keep after nms. | ||
Defaults to -1. | ||
Returns: | ||
tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] | ||
and `labels` of shape [N, num_det]. | ||
""" | ||
max_output_boxes_per_class = torch.LongTensor([max_output_boxes_per_class]) | ||
lvhan028 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
iou_threshold = torch.tensor([iou_threshold], dtype=torch.float32) | ||
score_threshold = torch.tensor([score_threshold], dtype=torch.float32) | ||
|
||
# pre topk | ||
if pre_top_k > 0: | ||
max_scores, _ = scores.max(-1) | ||
_, topk_inds = max_scores.squeeze(0).topk(pre_top_k) | ||
boxes = boxes[:, topk_inds, :] | ||
scores = scores[:, topk_inds, :] | ||
kernels = kernels[:, topk_inds, :] | ||
priors = priors[topk_inds, :] | ||
|
||
scores = scores.permute(0, 2, 1) | ||
selected_indices = ONNXNMSop.apply(boxes, scores, | ||
max_output_boxes_per_class, | ||
iou_threshold, score_threshold) | ||
|
||
cls_inds = selected_indices[:, 1] | ||
box_inds = selected_indices[:, 2] | ||
|
||
scores = scores[:, cls_inds, box_inds].unsqueeze(2) | ||
boxes = boxes[:, box_inds, ...] | ||
kernels = kernels[:, box_inds, :] | ||
priors = priors[box_inds, :] | ||
dets = torch.cat([boxes, scores], dim=2) | ||
labels = cls_inds.unsqueeze(0) | ||
|
||
# pad | ||
dets = torch.cat((dets, dets.new_zeros((1, 1, 5))), 1) | ||
labels = torch.cat((labels, labels.new_zeros((1, 1))), 1) | ||
|
||
# topk or sort | ||
is_use_topk = keep_top_k > 0 and \ | ||
(torch.onnx.is_in_onnx_export() or keep_top_k < dets.shape[1]) | ||
if is_use_topk: | ||
_, topk_inds = dets[:, :, -1].topk(keep_top_k, dim=1) | ||
else: | ||
_, topk_inds = dets[:, :, -1].sort(dim=1, descending=True) | ||
topk_inds = topk_inds.squeeze(0) | ||
dets = dets[:, topk_inds, ...] | ||
labels = labels[:, topk_inds, ...] | ||
kernels = kernels[:, topk_inds, ...] | ||
priors = priors[topk_inds, ...] | ||
mask_logits = _mask_predict_by_feat_single(self, mask_feats, kernels[0], | ||
priors) | ||
stride = self.prior_generator.strides[0][0] | ||
mask_logits = F.interpolate( | ||
mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear') | ||
masks = mask_logits.sigmoid() | ||
return dets, labels, masks | ||
|
||
|
||
@FUNCTION_REWRITER.register_rewriter( | ||
func_name='mmdeploy.codebase.mmdet.models.' | ||
'dense_heads.rtmdet_ins_head._nms_with_mask_static', | ||
backend='tensorrt') | ||
def _nms_with_mask_static__tensorrt(self, | ||
priors: Tensor, | ||
boxes: Tensor, | ||
scores: Tensor, | ||
kernels: Tensor, | ||
mask_feats: Tensor, | ||
max_output_boxes_per_class: int = 1000, | ||
iou_threshold: float = 0.5, | ||
score_threshold: float = 0.05, | ||
pre_top_k: int = -1, | ||
keep_top_k: int = -1, | ||
mask_thr_binary: float = 0.5): | ||
"""Wrapper for `multiclass_nms` with TensorRT. | ||
Args: | ||
ctx (ContextCaller): The context with additional information. | ||
boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4]. | ||
scores (Tensor): The detection scores of shape | ||
[N, num_boxes, num_classes]. | ||
max_output_boxes_per_class (int): Maximum number of output | ||
boxes per class of nms. Defaults to 1000. | ||
iou_threshold (float): IOU threshold of nms. Defaults to 0.5. | ||
score_threshold (float): score threshold of nms. | ||
Defaults to 0.05. | ||
pre_top_k (int): Number of top K boxes to keep before nms. | ||
Defaults to -1. | ||
keep_top_k (int): Number of top K boxes to keep after nms. | ||
Defaults to -1. | ||
Returns: | ||
tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] | ||
and `labels` of shape [N, num_det]. | ||
""" | ||
boxes = boxes if boxes.dim() == 4 else boxes.unsqueeze(2) | ||
keep_top_k = max_output_boxes_per_class if keep_top_k < 0 else min( | ||
max_output_boxes_per_class, keep_top_k) | ||
dets, labels, inds = TRTBatchedNMSop.apply(boxes, scores, | ||
int(scores.shape[-1]), | ||
pre_top_k, keep_top_k, | ||
iou_threshold, score_threshold, | ||
-1, True) | ||
# inds shape: (batch, n_boxes) | ||
# retain shape info | ||
batch_size = boxes.size(0) | ||
|
||
dets_shape = dets.shape | ||
label_shape = labels.shape | ||
dets = dets.reshape([batch_size, *dets_shape[1:]]) | ||
labels = labels.reshape([batch_size, *label_shape[1:]]) | ||
kernels = kernels[:, inds.reshape(-1), ...] | ||
priors = priors[inds.reshape(-1), ...] | ||
mask_logits = _mask_predict_by_feat_single(self, mask_feats, kernels[0], | ||
priors) | ||
stride = self.prior_generator.strides[0][0] | ||
mask_logits = F.interpolate( | ||
mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear') | ||
masks = mask_logits.sigmoid() | ||
return dets, labels, masks | ||
|
||
|
||
def _mask_predict_by_feat_single(self, mask_feat, kernels, priors): | ||
"""decode mask with dynamic conv.""" | ||
num_inst = priors.shape[0] | ||
h, w = mask_feat.size()[-2:] | ||
if num_inst < 1: | ||
return torch.empty( | ||
size=(num_inst, h, w), | ||
dtype=mask_feat.dtype, | ||
device=mask_feat.device) | ||
if len(mask_feat.shape) < 4: | ||
mask_feat.unsqueeze(0) | ||
coord = self.prior_generator.single_level_grid_priors( | ||
(h, w), level_idx=0).reshape(1, -1, 2).to(mask_feat.device) | ||
num_inst = priors.shape[0] | ||
points = priors[:, :2].reshape(-1, 1, 2) | ||
strides = priors[:, 2:].reshape(-1, 1, 2) | ||
relative_coord = (points - coord).permute(0, 2, 1) / ( | ||
strides[..., 0].reshape(-1, 1, 1) * 8) | ||
relative_coord = relative_coord.reshape(num_inst, 2, h, w) | ||
|
||
mask_feat = torch.cat( | ||
[relative_coord, mask_feat.repeat(num_inst, 1, 1, 1)], dim=1) | ||
weights, biases = _parse_dynamic_params(self, kernels) | ||
|
||
n_layers = len(weights) | ||
x = mask_feat.flatten(2) | ||
for i, (weight, bias) in enumerate(zip(weights, biases)): | ||
# replace dynamic conv with bmm | ||
x = torch.bmm(weight, x) | ||
x = x + bias[:, :, None] | ||
if i < n_layers - 1: | ||
x = x.clamp_(min=0) | ||
x = x.reshape(num_inst, h, w) | ||
return x | ||
|
||
|
||
def _parse_dynamic_params(self, flatten_kernels): | ||
"""split kernel head prediction to conv weight and bias.""" | ||
n_inst = flatten_kernels.size(0) | ||
n_layers = len(self.weight_nums) | ||
params_splits = list( | ||
torch.split_with_sizes( | ||
flatten_kernels, self.weight_nums + self.bias_nums, dim=1)) | ||
weight_splits = params_splits[:n_layers] | ||
bias_splits = params_splits[n_layers:] | ||
for idx in range(n_layers): | ||
if idx < n_layers - 1: | ||
weight_splits[idx] = weight_splits[idx].reshape( | ||
n_inst, self.dyconv_channels, -1) | ||
else: | ||
weight_splits[idx] = weight_splits[idx].reshape(n_inst, 1, -1) | ||
return weight_splits, bias_splits |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.