Skip to content

Removed float indices from dnn tests #1154

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified testdata/dnn/onnx/data/input_argmax.npy
Binary file not shown.
Binary file modified testdata/dnn/onnx/data/input_argmin.npy
Binary file not shown.
Binary file modified testdata/dnn/onnx/data/output_argmax.npy
Binary file not shown.
Binary file modified testdata/dnn/onnx/data/output_argmin.npy
Binary file not shown.
4 changes: 2 additions & 2 deletions testdata/dnn/onnx/generate_onnx_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -2665,7 +2665,7 @@ def __init__(self, *args, **kwargs):
super(ArgMax, self).__init__()

def forward(self, x):
return torch.argmax(x, dim=2, keepdims=False).to(torch.float32)
return torch.argmax(x, dim=2, keepdims=False)

model = ArgMax()
input_ = Variable(torch.randn(2, 3, 4, 5, dtype=torch.float32))
Expand All @@ -2676,7 +2676,7 @@ def __init__(self, *args, **kwargs):
super(ArgMin, self).__init__()

def forward(self, x):
return torch.argmin(x, dim=-1, keepdims=True).to(torch.float32)
return torch.argmin(x, dim=-1, keepdims=True)

model = ArgMin()
input_ = Variable(torch.randn(2, 3, 4, 5, dtype=torch.float32))
Expand Down
Binary file modified testdata/dnn/onnx/models/argmax.onnx
Binary file not shown.
Binary file modified testdata/dnn/onnx/models/argmin.onnx
Binary file not shown.
Binary file modified testdata/dnn/tensorflow/argmax_in.npy
Binary file not shown.
Binary file modified testdata/dnn/tensorflow/argmax_net.pb
Binary file not shown.
Binary file modified testdata/dnn/tensorflow/argmax_out.npy
Binary file not shown.
Binary file modified testdata/dnn/tensorflow/argmin_in.npy
Binary file not shown.
Binary file modified testdata/dnn/tensorflow/argmin_net.pb
Binary file not shown.
Binary file modified testdata/dnn/tensorflow/argmin_out.npy
Binary file not shown.
14 changes: 13 additions & 1 deletion testdata/dnn/tensorflow/generate_tf2_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ def writeBlob(data, name, nchw = False):
# NDHWC->NCDHW
data = data.transpose(0, 4, 1, 2, 3)

data = np.ascontiguousarray(data.astype(np.float32))
data = np.ascontiguousarray(data)
np.save(name + '.npy', data)


Expand Down Expand Up @@ -148,6 +148,18 @@ def saveBroken(graph, name):
y = tf.compat.v1.nn.conv2d_backprop_input(input_sizes=tf.constant([1, 3, 4, 2]), filter=kernel, out_backprop=x, data_format = "NHWC", padding = [[0, 0], [2, 1], [2, 1], [0, 0]], strides = [1, 3, 2, 1])
model = tf.keras.Model(x, y)
save(model, 'conv2d_backprop_input_asymmetric_pads_nhwc', False, x=tf.TensorSpec(shape=(1, 2, 3, 3), dtype=tf.float32))
################################################################################
tf.keras.backend.set_image_data_format('channels_first')
x = tf.keras.layers.Input(batch_shape = (2, 3, 4), name='x')
y = tf.math.argmax(x, axis=-1)
model = tf.keras.Model(x, y)
save(model, 'argmax', True, x=tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32))
################################################################################
tf.keras.backend.set_image_data_format('channels_last')
x = tf.keras.layers.Input(batch_shape = (2, 3, 4), name='x')
y = tf.math.argmin(x, axis=1)
model = tf.keras.Model(x, y)
save(model, 'argmin', False, x=tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32))

# Uncomment to print the final graph.
# with tf.io.gfile.GFile('tf2_prelu_net.pb', 'rb') as f:
Expand Down
8 changes: 0 additions & 8 deletions testdata/dnn/tensorflow/generate_tf_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -1070,14 +1070,6 @@ def pad_depth(x, desired_channels):
square = tf.square(inp)
save(inp, square, 'square')
################################################################################
inp = tf.placeholder(tf.float32, [2, 3, 4], 'input')
argmax = tf.argmax(inp, -1)
save(inp, argmax, 'argmax')
################################################################################
inp = tf.placeholder(tf.float32, [2, 3, 4], 'input')
argmin = tf.argmin(inp, 1)
save(inp, argmin, 'argmin')
################################################################################
# Generate graph and test data for Reshape permutations check
stride = 1
kernel_size = 3
Expand Down