Skip to content

(4.x) Merge 3.4 #988

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added testdata/dnn/onnx/data/input_div_test_1x1_0.npy
Binary file not shown.
Binary file added testdata/dnn/onnx/data/input_div_test_1x1_1.npy
Binary file not shown.
Binary file added testdata/dnn/onnx/data/output_div_test_1x1.npy
Binary file not shown.
60 changes: 59 additions & 1 deletion testdata/dnn/onnx/generate_onnx_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ def save_onnx_data_and_model(input, output, name, operation, *args, **kwargs):
model = onnx.helper.make_model(graph, producer_name=name)
onnx.save(model, models_files)

<<<<<<< HEAD
def save_data_and_onnx_model(name, input_np, output_np, onnx_model):
print(name + " input has sizes", input_np.shape)
input_files = os.path.join("data", "input_" + name)
Expand All @@ -93,6 +94,44 @@ def save_data_and_onnx_model(name, input_np, output_np, onnx_model):
file.write(model_def.SerializeToString())


||||||| 5bad582
=======
def save_data_and_onnx_model(name, input_np, output_np, onnx_model):
print(name + " input has sizes", input_np.shape)
input_files = os.path.join("data", "input_" + name)
np.save(input_files, input_np.data)

print(name + " output has sizes", output_np.shape)
print()
output_files = os.path.join("data", "output_" + name)
np.save(output_files, np.ascontiguousarray(output_np.data))

models_files = os.path.join("models", name + ".onnx")

onnx_model_pb = onnx._serialize(onnx_model)
model_def = assertONNXExpected(onnx_model_pb)
with open(models_files, 'wb') as file:
file.write(model_def.SerializeToString())

def save_data_and_onnx_model_multy_inputs(name, input_list, output_np, onnx_model):
for index in range(len(input_list)):
print(name + " input "+str(index)+" has sizes", input_list[index].shape)
input_files = os.path.join("data", "input_" + name + "_" + str(index))
np.save(input_files, input_list[index])

print(name + " output has sizes", output_np.shape)
print()
output_files = os.path.join("data", "output_" + name)
np.save(output_files, np.ascontiguousarray(output_np.data))

models_files = os.path.join("models", name + ".onnx")

onnx_model_pb = onnx._serialize(onnx_model)
model_def = assertONNXExpected(onnx_model_pb)
with open(models_files, 'wb') as file:
file.write(model_def.SerializeToString())

>>>>>>> upstream/3.4
def simplify(name, rename=False, **kwargs):
model, check = onnxsim.simplify(name, **kwargs)
assert check, "couldn't valide"
Expand Down Expand Up @@ -2062,4 +2101,23 @@ def gemm_reference_implementation(A: np.ndarray, B: np.ndarray, C: Optional[np.n
outputs, initializer=[weight_tensor])
gemm_model2 = onnx.helper.make_model(graph2)
output_np = gemm_reference_implementation(input_np, weight_np)
save_data_and_onnx_model("gemm_transB_0", input_np, output_np, gemm_model2)
save_data_and_onnx_model("gemm_transB_0", input_np, output_np, gemm_model2)

# ########################## DivBroadcast ##########################
input_np = np.random.rand(1, 4).astype("float32")
input2_np = np.random.rand(1, 1).astype(np.float32)
inputs = [onnx.helper.make_tensor_value_info("input1", onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[input_np.dtype], shape=input_np.shape), \
onnx.helper.make_tensor_value_info("input2", onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[input2_np.dtype], shape=input2_np.shape)]

outputs = [onnx.helper.make_tensor_value_info("output", onnx.TensorProto.FLOAT, shape=(1, 4))]

nodes = [onnx.helper.make_node("Div", ["input1", "input2"], ["output"])]

graph = onnx.helper.make_graph(nodes,
"div_test",
inputs,
outputs)
onnx_model = onnx.helper.make_model(graph)

output_np = input_np/input2_np
save_data_and_onnx_model_multy_inputs("div_test_1x1", [input_np, input2_np], output_np, onnx_model)
16 changes: 16 additions & 0 deletions testdata/dnn/onnx/models/div_test_1x1.onnx
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
:w

input1
input2output"Divdiv_testZ
input1


Z
input2


b
output


B