Description
Code Sample
import pandas as pd
import numpy as np
dataframe1 = pd.DataFrame(data={'a': np.random.rand(100), 'b': np.ones(100)})
dataframe2 = pd.DataFrame(data={'a': np.random.rand(100), 'b': np.ones(100)})
dataframe3 = pd.DataFrame(data={'a': np.random.rand(100), 'b': np.ones(100)})
joined_dataframe = dataframe1.join(dataframe2, lsuffix='_first', rsuffix='_second').join(dataframe3, lsuffix='_nothing', rsuffix='_third')
print joined_dataframe.columns
This outputs the columns on the final dataframe. These have the wrong suffixes. The above script prints the following with pandas 0.21.0
Index([u'a_first', u'b_first', u'a_second', u'b_second', u'a', u'b'], dtype='object')
Problem description
In my above example, the first join operation gives the correct column suffixes. But the second operation does not. In my experience, it does not matter how you divide them steps, the second join operation never assigns the correct column suffixes.
The joined_dataframe should of course have columns which reflect the suffixes in my second join, namely "_nothing" on columns from dataframe 1 and 2, and "_third" on columns from dataframe 3.
Expected Output
Output of pd.show_versions()
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.12.final.0
python-bits: 64
OS: Linux
OS-release: 4.10.0-40-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None
pandas: 0.21.0
pytest: 3.2.5
pip: 8.1.1
setuptools: 20.7.0
Cython: None
numpy: 1.13.3
scipy: 1.0.0
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2017.3
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.1.0
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.999
sqlalchemy: 1.1.15
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None