Skip to content

BUG: CustomBusinessHour is to capturing last business hour defined by end parameter #49838

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
3 tasks done
scottboston opened this issue Nov 22, 2022 · 4 comments · Fixed by #50182
Closed
3 tasks done
Assignees
Labels

Comments

@scottboston
Copy link

scottboston commented Nov 22, 2022

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import datetime as dt
freq = pd.offsets.CustomBusinessHour(weekmask="Sat Sun", start="00:00", end="16:00")
pd.date_range(dt.datetime(2020,1,1), dt.datetime(2020,1,15), freq=freq)

Issue Description

Expected to return every hour of a day from midnight to 16:00, but when including end='16:00' that last hour isn't captured. Per the doc it states that end defaults to '16:00'. You can put any hour for end and it doesn't capture that final hour.

DatetimeIndex(['2020-01-04 00:00:00', '2020-01-04 01:00:00',
               '2020-01-04 02:00:00', '2020-01-04 03:00:00',
               '2020-01-04 04:00:00', '2020-01-04 05:00:00',
               '2020-01-04 06:00:00', '2020-01-04 07:00:00',
               '2020-01-04 08:00:00', '2020-01-04 09:00:00',
               '2020-01-04 10:00:00', '2020-01-04 11:00:00',
               '2020-01-04 12:00:00', '2020-01-04 13:00:00',
               '2020-01-04 14:00:00', '2020-01-04 15:00:00',
               '2020-01-05 00:00:00', '2020-01-05 01:00:00',
               '2020-01-05 02:00:00', '2020-01-05 03:00:00',
               '2020-01-05 04:00:00', '2020-01-05 05:00:00',
               '2020-01-05 06:00:00', '2020-01-05 07:00:00',
               '2020-01-05 08:00:00', '2020-01-05 09:00:00',
               '2020-01-05 10:00:00', '2020-01-05 11:00:00',
               '2020-01-05 12:00:00', '2020-01-05 13:00:00',
               '2020-01-05 14:00:00', '2020-01-05 15:00:00',
               '2020-01-11 00:00:00', '2020-01-11 01:00:00',
               '2020-01-11 02:00:00', '2020-01-11 03:00:00',
               '2020-01-11 04:00:00', '2020-01-11 05:00:00',
               '2020-01-11 06:00:00', '2020-01-11 07:00:00',
               '2020-01-11 08:00:00', '2020-01-11 09:00:00',
               '2020-01-11 10:00:00', '2020-01-11 11:00:00',
               '2020-01-11 12:00:00', '2020-01-11 13:00:00',
               '2020-01-11 14:00:00', '2020-01-11 15:00:00',
               '2020-01-12 00:00:00', '2020-01-12 01:00:00',
               '2020-01-12 02:00:00', '2020-01-12 03:00:00',
               '2020-01-12 04:00:00', '2020-01-12 05:00:00',
               '2020-01-12 06:00:00', '2020-01-12 07:00:00',
               '2020-01-12 08:00:00', '2020-01-12 09:00:00',
               '2020-01-12 10:00:00', '2020-01-12 11:00:00',
               '2020-01-12 12:00:00', '2020-01-12 13:00:00',
               '2020-01-12 14:00:00', '2020-01-12 15:00:00'],
              dtype='datetime64[ns]', freq='CBH')

Expected Behavior

import pandas as pd
import datetime as dt
freq = pd.offsets.CustomBusinessHour(weekmask="Sat Sun", start="00:00", end="16:00")
pd.date_range(dt.datetime(2020,1,1), dt.datetime(2020,1,15), freq=freq)

Expected:

DatetimeIndex(['2020-01-04 00:00:00', '2020-01-04 01:00:00',
               '2020-01-04 02:00:00', '2020-01-04 03:00:00',
               '2020-01-04 04:00:00', '2020-01-04 05:00:00',
               '2020-01-04 06:00:00', '2020-01-04 07:00:00',
               '2020-01-04 08:00:00', '2020-01-04 09:00:00',
               '2020-01-04 10:00:00', '2020-01-04 11:00:00',
               '2020-01-04 12:00:00', '2020-01-04 13:00:00',
               '2020-01-04 14:00:00', '2020-01-04 15:00:00',
               '2020-01-04 16:00:00', '2020-01-05 00:00:00',
               '2020-01-05 01:00:00', '2020-01-05 02:00:00',
               '2020-01-05 03:00:00', '2020-01-05 04:00:00',
               '2020-01-05 05:00:00', '2020-01-05 06:00:00',
               '2020-01-05 07:00:00', '2020-01-05 08:00:00',
               '2020-01-05 09:00:00', '2020-01-05 10:00:00',
               '2020-01-05 11:00:00', '2020-01-05 12:00:00',
               '2020-01-05 13:00:00', '2020-01-05 14:00:00',
               '2020-01-05 15:00:00', '2020-01-05 16:00:00',
               '2020-01-11 00:00:00', '2020-01-11 01:00:00',
               '2020-01-11 02:00:00', '2020-01-11 03:00:00',
               '2020-01-11 04:00:00', '2020-01-11 05:00:00',
               '2020-01-11 06:00:00', '2020-01-11 07:00:00',
               '2020-01-11 08:00:00', '2020-01-11 09:00:00',
               '2020-01-11 10:00:00', '2020-01-11 11:00:00',
               '2020-01-11 12:00:00', '2020-01-11 13:00:00',
               '2020-01-11 14:00:00', '2020-01-11 15:00:00',
               '2020-01-11 16:00:00', '2020-01-12 00:00:00',
               '2020-01-12 01:00:00', '2020-01-12 02:00:00',
               '2020-01-12 03:00:00', '2020-01-12 04:00:00',
               '2020-01-12 05:00:00', '2020-01-12 06:00:00',
               '2020-01-12 07:00:00', '2020-01-12 08:00:00',
               '2020-01-12 09:00:00', '2020-01-12 10:00:00',
               '2020-01-12 11:00:00', '2020-01-12 12:00:00',
               '2020-01-12 13:00:00', '2020-01-12 14:00:00',
               '2020-01-12 15:00:00', '2020-01-12 16:00:00'],
              dtype='datetime64[ns]', freq='CBH')

Installed Versions

INSTALLED VERSIONS

commit : 91111fd
python : 3.9.2.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 165 Stepping 5, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252

pandas : 1.5.1
numpy : 1.23.4
pytz : 2022.2.1
dateutil : 2.8.2
setuptools : 65.3.0
pip : 22.2.2
Cython : None
pytest : 7.2.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 3.0.3
lxml.etree : 4.9.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.4.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : None
brotli :
fastparquet : None
fsspec : 2022.8.2
gcsfs : None
matplotlib : 3.6.1
numba : None
numexpr : None
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : 1.0.10
s3fs : None
scipy : 1.8.1
snappy : None
sqlalchemy : 1.4.40
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : 2022.2

@scottboston scottboston added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Nov 22, 2022
@Eikinho
Copy link

Eikinho commented Nov 22, 2022

take

@natmokval
Copy link
Contributor

Hi @Eikinho. Do you mind if I will work on this issue as well?

@natmokval
Copy link
Contributor

natmokval commented Dec 10, 2022

I am not sure that there is a problem here. It looks like expected behavior. The return value contains the beginning of every business hour. That is why 16:00 is not included in this case.

The example from the issue description may be useful to clarify the behavior of CustomBusinessHour. Probably, documentation for CustomBusinessHour can be updated. @MarcoGorelli, what do you think?

@MarcoGorelli
Copy link
Member

Agree that this looks expected - and sure, an extra example to clarify would be great, the docs are quite sparse on this at the moment

@MarcoGorelli MarcoGorelli added Docs and removed Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Dec 10, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging a pull request may close this issue.

4 participants