Skip to content

BUG: Preserve column metadata with DataFrame.astype #19948

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 1, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.23.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -954,6 +954,7 @@ Reshaping
- Bug in :func:`qcut` where datetime and timedelta data with ``NaT`` present raised a ``ValueError`` (:issue:`19768`)
- Bug in :func:`DataFrame.iterrows`, which would infers strings not compliant to `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_ to datetimes (:issue:`19671`)
- Bug in :class:`Series` constructor with ``Categorical`` where a ```ValueError`` is not raised when an index of different length is given (:issue:`19342`)
- Bug in :meth:`DataFrame.astype` where column metadata is lost when converting to categorical or a dictionary of dtypes (:issue:`19920`)

Other
^^^^^
Expand Down
16 changes: 10 additions & 6 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -4436,17 +4436,21 @@ def astype(self, dtype, copy=True, errors='raise', **kwargs):
results.append(col.astype(dtype[col_name], copy=copy))
else:
results.append(results.append(col.copy() if copy else col))
return pd.concat(results, axis=1, copy=False)

elif is_categorical_dtype(dtype) and self.ndim > 1:
# GH 18099: columnwise conversion to categorical
results = (self[col].astype(dtype, copy=copy) for col in self)
return pd.concat(results, axis=1, copy=False)

# else, only a single dtype is given
new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors,
**kwargs)
return self._constructor(new_data).__finalize__(self)
else:
# else, only a single dtype is given
new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors,
**kwargs)
return self._constructor(new_data).__finalize__(self)

# GH 19920: retain column metadata after concat
result = pd.concat(results, axis=1, copy=False)
result.columns = self.columns
return result

def copy(self, deep=True):
"""
Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/frame/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -649,6 +649,15 @@ def test_astype_categoricaldtype_class_raises(self, cls):
with tm.assert_raises_regex(TypeError, xpr):
df['A'].astype(cls)

@pytest.mark.parametrize('dtype', [
{100: 'float64', 200: 'uint64'}, 'category', 'float64'])
def test_astype_column_metadata(self, dtype):
# GH 19920
columns = pd.UInt64Index([100, 200, 300], name='foo')
df = DataFrame(np.arange(15).reshape(5, 3), columns=columns)
df = df.astype(dtype)
tm.assert_index_equal(df.columns, columns)

@pytest.mark.parametrize("dtype", ["M8", "m8"])
@pytest.mark.parametrize("unit", ['ns', 'us', 'ms', 's', 'h', 'm', 'D'])
def test_astype_from_datetimelike_to_objectt(self, dtype, unit):
Expand Down