Skip to content

CLN: Consistent pandas.util.testing imports in pandas/tests/groupby #29287

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 36 additions & 31 deletions pandas/tests/groupby/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
qcut,
)
import pandas.util.testing as tm
from pandas.util.testing import assert_equal, assert_frame_equal, assert_series_equal


def cartesian_product_for_groupers(result, args, names):
Expand Down Expand Up @@ -159,7 +158,7 @@ def f(x):
exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True)
expected = expected.reindex(exp_idx)

assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

grouped = data.groupby(cats, observed=False)
desc_result = grouped.describe()
Expand All @@ -172,7 +171,7 @@ def f(x):
ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"]
)
expected = ord_data.groupby(exp_cats, sort=False, observed=False).describe()
assert_frame_equal(desc_result, expected)
tm.assert_frame_equal(desc_result, expected)

# GH 10460
expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True)
Expand Down Expand Up @@ -206,7 +205,7 @@ def test_level_get_group(observed):
)
result = g.get_group("a")

assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)


# GH#21636 flaky on py37; may be related to older numpy, see discussion
Expand All @@ -232,21 +231,21 @@ def test_apply(ordered):
# is coming back as Series([0., 1., 0.], index=["missing", "dense", "values"])
# when we expect Series(0., index=["values"])
result = grouped.apply(lambda x: np.mean(x))
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

# we coerce back to ints
expected = expected.astype("int")
result = grouped.mean()
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

result = grouped.agg(np.mean)
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

# but for transform we should still get back the original index
idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"])
expected = Series(1, index=idx)
result = grouped.apply(lambda x: 1)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)


def test_observed(observed):
Expand Down Expand Up @@ -335,7 +334,7 @@ def test_observed(observed):
c, i = key
result = groups_double_key.get_group(key)
expected = df[(df.cat == c) & (df.ints == i)]
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

# gh-8869
# with as_index
Expand Down Expand Up @@ -522,7 +521,7 @@ def test_datetime():
expected.index, categories=expected.index, ordered=True
)

assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

grouped = data.groupby(cats, observed=False)
desc_result = grouped.describe()
Expand All @@ -531,7 +530,7 @@ def test_datetime():
ord_labels = cats.take(idx)
ord_data = data.take(idx)
expected = ord_data.groupby(ord_labels, observed=False).describe()
assert_frame_equal(desc_result, expected)
tm.assert_frame_equal(desc_result, expected)
tm.assert_index_equal(desc_result.index, expected.index)
tm.assert_index_equal(
desc_result.index.get_level_values(0), expected.index.get_level_values(0)
Expand Down Expand Up @@ -560,15 +559,15 @@ def test_categorical_index():
expected.index = CategoricalIndex(
Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats"
)
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

# with a cat column, should produce a cat index
result = df.groupby("cats", observed=False).sum()
expected = df[list("abcd")].groupby(cats.codes, observed=False).sum()
expected.index = CategoricalIndex(
Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats"
)
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)


def test_describe_categorical_columns():
Expand Down Expand Up @@ -757,7 +756,7 @@ def test_categorical_no_compress():
exp.index = CategoricalIndex(
exp.index, categories=cats.categories, ordered=cats.ordered
)
assert_series_equal(result, exp)
tm.assert_series_equal(result, exp)

codes = np.array([0, 0, 0, 1, 1, 1, 3, 3, 3])
cats = Categorical.from_codes(codes, [0, 1, 2, 3], ordered=True)
Expand All @@ -767,7 +766,7 @@ def test_categorical_no_compress():
exp.index = CategoricalIndex(
exp.index, categories=cats.categories, ordered=cats.ordered
)
assert_series_equal(result, exp)
tm.assert_series_equal(result, exp)

cats = Categorical(
["a", "a", "a", "b", "b", "b", "c", "c", "c"],
Expand Down Expand Up @@ -829,12 +828,12 @@ def test_sort2():

col = "range"
result_sort = df.groupby(col, sort=True, observed=False).first()
assert_frame_equal(result_sort, expected_sort)
tm.assert_frame_equal(result_sort, expected_sort)

# when categories is ordered, group is ordered by category's order
expected_sort = result_sort
result_sort = df.groupby(col, sort=False, observed=False).first()
assert_frame_equal(result_sort, expected_sort)
tm.assert_frame_equal(result_sort, expected_sort)

df["range"] = Categorical(df["range"], ordered=False)
index = CategoricalIndex(
Expand All @@ -857,10 +856,10 @@ def test_sort2():

# this is an unordered categorical, but we allow this ####
result_sort = df.groupby(col, sort=True, observed=False).first()
assert_frame_equal(result_sort, expected_sort)
tm.assert_frame_equal(result_sort, expected_sort)

result_nosort = df.groupby(col, sort=False, observed=False).first()
assert_frame_equal(result_nosort, expected_nosort)
tm.assert_frame_equal(result_nosort, expected_nosort)


def test_sort_datetimelike():
Expand Down Expand Up @@ -912,10 +911,14 @@ def test_sort_datetimelike():
)

col = "dt"
assert_frame_equal(result_sort, df.groupby(col, sort=True, observed=False).first())
tm.assert_frame_equal(
result_sort, df.groupby(col, sort=True, observed=False).first()
)

# when categories is ordered, group is ordered by category's order
assert_frame_equal(result_sort, df.groupby(col, sort=False, observed=False).first())
tm.assert_frame_equal(
result_sort, df.groupby(col, sort=False, observed=False).first()
)

# ordered = False
df["dt"] = Categorical(df["dt"], ordered=False)
Expand All @@ -942,8 +945,10 @@ def test_sort_datetimelike():
result_nosort.index = CategoricalIndex(index, categories=index, name="dt")

col = "dt"
assert_frame_equal(result_sort, df.groupby(col, sort=True, observed=False).first())
assert_frame_equal(
tm.assert_frame_equal(
result_sort, df.groupby(col, sort=True, observed=False).first()
)
tm.assert_frame_equal(
result_nosort, df.groupby(col, sort=False, observed=False).first()
)

Expand Down Expand Up @@ -1022,7 +1027,7 @@ def test_groupby_multiindex_categorical_datetime():
names=["key1", "key2"],
)
expected = DataFrame({"values": [0, 4, 8, 3, 4, 5, 6, np.nan, 2]}, index=idx)
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
Expand Down Expand Up @@ -1058,7 +1063,7 @@ def test_groupby_agg_observed_true_single_column(as_index, expected):

result = df.groupby(["a", "b"], as_index=as_index, observed=True)["x"].sum()

assert_equal(result, expected)
tm.assert_equal(result, expected)


@pytest.mark.parametrize("fill_value", [None, np.nan, pd.NaT])
Expand All @@ -1070,7 +1075,7 @@ def test_shift(fill_value):
[None, "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False
)
res = ct.shift(1, fill_value=fill_value)
assert_equal(res, expected)
tm.assert_equal(res, expected)


@pytest.fixture
Expand Down Expand Up @@ -1112,7 +1117,7 @@ def test_seriesgroupby_observed_true(df_cat, operation, kwargs):
expected = Series(data=[1, 3, 2, 4], index=index, name="C")
grouped = df_cat.groupby(["A", "B"], observed=True)["C"]
result = getattr(grouped, operation)(sum)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("operation", ["agg", "apply"])
Expand All @@ -1130,7 +1135,7 @@ def test_seriesgroupby_observed_false_or_none(df_cat, observed, operation):
expected = Series(data=[2, 4, np.nan, 1, np.nan, 3], index=index, name="C")
grouped = df_cat.groupby(["A", "B"], observed=observed)["C"]
result = getattr(grouped, operation)(sum)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
Expand Down Expand Up @@ -1185,7 +1190,7 @@ def test_seriesgroupby_observed_apply_dict(df_cat, observed, index, data):
result = df_cat.groupby(["A", "B"], observed=observed)["C"].apply(
lambda x: OrderedDict([("min", x.min()), ("max", x.max())])
)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("code", [([1, 0, 0]), ([0, 0, 0])])
Expand All @@ -1195,7 +1200,7 @@ def test_groupby_categorical_axis_1(code):
cat = pd.Categorical.from_codes(code, categories=list("abc"))
result = df.groupby(cat, axis=1).mean()
expected = df.T.groupby(cat, axis=0).mean().T
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)


def test_groupby_cat_preserves_structure(observed, ordered_fixture):
Expand All @@ -1212,7 +1217,7 @@ def test_groupby_cat_preserves_structure(observed, ordered_fixture):
.reset_index()
)

assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)


def test_get_nonexistent_category():
Expand Down
Loading