Skip to content

test backportability of #38120 #38137

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 26 additions & 2 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,11 +46,13 @@
pandas_dtype,
)
from pandas.core.dtypes.generic import (
ABCDatetimeArray,
ABCExtensionArray,
ABCIndex,
ABCIndexClass,
ABCMultiIndex,
ABCSeries,
ABCTimedeltaArray,
)
from pandas.core.dtypes.missing import isna, na_value_for_dtype

Expand Down Expand Up @@ -191,8 +193,15 @@ def _reconstruct_data(
-------
ExtensionArray or np.ndarray
"""
if is_extension_array_dtype(dtype):
values = dtype.construct_array_type()._from_sequence(values)
if isinstance(values, ABCExtensionArray) and values.dtype == dtype:
# Catch DatetimeArray/TimedeltaArray
return values
elif is_extension_array_dtype(dtype):
cls = dtype.construct_array_type()
if isinstance(values, cls) and values.dtype == dtype:
return values

values = cls._from_sequence(values)
elif is_bool_dtype(dtype):
values = values.astype(dtype, copy=False)

Expand Down Expand Up @@ -654,6 +663,8 @@ def factorize(

values = _ensure_arraylike(values)
original = values
if not isinstance(values, ABCMultiIndex):
values = extract_array(values, extract_numpy=True)

# GH35667, if na_sentinel=None, we will not dropna NaNs from the uniques
# of values, assign na_sentinel=-1 to replace code value for NaN.
Expand All @@ -662,6 +673,19 @@ def factorize(
na_sentinel = -1
dropna = False

if (
isinstance(values, (ABCDatetimeArray, ABCTimedeltaArray))
and values.freq is not None
):
codes, uniques = values.factorize(sort=sort)
if isinstance(original, ABCIndexClass):
uniques = original._shallow_copy(uniques, name=None)
elif isinstance(original, ABCSeries):
from pandas import Index

uniques = Index(uniques)
return codes, uniques

if is_extension_array_dtype(values.dtype):
values = extract_array(values)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

there was a merge conflict here, and should have removed this line

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

when the current ci has completed, will remove this and check not needed.

codes, uniques = values.factorize(na_sentinel=na_sentinel)
Expand Down
14 changes: 14 additions & 0 deletions pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -1660,6 +1660,20 @@ def mean(self, skipna=True):
# Don't have to worry about NA `result`, since no NA went in.
return self._box_func(result)

# --------------------------------------------------------------

def factorize(self, na_sentinel=-1, sort: bool = False):
if self.freq is not None:
# We must be unique, so can short-circuit (and retain freq)
codes = np.arange(len(self), dtype=np.intp)
uniques = self.copy() # TODO: copy or view?
if sort and self.freq.n < 0:
codes = codes[::-1]
uniques = uniques[::-1]
return codes, uniques
# FIXME: shouldn't get here; we are ignoring sort
return super().factorize(na_sentinel=na_sentinel)


DatetimeLikeArrayMixin._add_comparison_ops()

Expand Down
4 changes: 4 additions & 0 deletions pandas/core/arrays/period.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@

import pandas.core.algorithms as algos
from pandas.core.arrays import datetimelike as dtl
from pandas.core.arrays.base import ExtensionArray
import pandas.core.common as com


Expand Down Expand Up @@ -766,6 +767,9 @@ def _check_timedeltalike_freq_compat(self, other):

raise raise_on_incompatible(self, other)

def factorize(self, na_sentinel=-1):
return ExtensionArray.factorize(self, na_sentinel=na_sentinel)


def raise_on_incompatible(left, right):
"""
Expand Down
61 changes: 40 additions & 21 deletions pandas/tests/indexes/datetimes/test_datetime.py
Original file line number Diff line number Diff line change
Expand Up @@ -271,10 +271,12 @@ def test_factorize(self):
arr, idx = idx1.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq

arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq

# tz must be preserved
idx1 = idx1.tz_localize("Asia/Tokyo")
Expand All @@ -283,6 +285,7 @@ def test_factorize(self):
arr, idx = idx1.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq

idx2 = pd.DatetimeIndex(
["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"]
Expand All @@ -293,49 +296,65 @@ def test_factorize(self):
arr, idx = idx2.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq

exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp)
exp_idx = DatetimeIndex(["2014-03", "2014-02", "2014-01"])
arr, idx = idx2.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq

# freq must be preserved
def test_factorize_preserves_freq(self):
# GH#38120 freq should be preserved
idx3 = date_range("2000-01", periods=4, freq="M", tz="Asia/Tokyo")
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)

arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq

def test_factorize_tz(self, tz_naive_fixture):
arr, idx = pd.factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq

def test_factorize_tz(self, tz_naive_fixture, index_or_series):
tz = tz_naive_fixture
# GH#13750
base = pd.date_range("2016-11-05", freq="H", periods=100, tz=tz)
idx = base.repeat(5)

exp_arr = np.arange(100, dtype=np.intp).repeat(5)

for obj in [idx, pd.Series(idx)]:
arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
expected = base._with_freq(None)
tm.assert_index_equal(res, expected)
obj = index_or_series(idx)

def test_factorize_dst(self):
# GH 13750
idx = pd.date_range("2016-11-06", freq="H", periods=12, tz="US/Eastern")

for obj in [idx, pd.Series(idx)]:
arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
tm.assert_index_equal(res, idx)

idx = pd.date_range("2016-06-13", freq="H", periods=12, tz="US/Eastern")
arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
expected = base._with_freq(None)
tm.assert_index_equal(res, expected)
assert res.freq == expected.freq

for obj in [idx, pd.Series(idx)]:
arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
tm.assert_index_equal(res, idx)
def test_factorize_dst(self, index_or_series):
# GH 13750
idx = date_range("2016-11-06", freq="H", periods=12, tz="US/Eastern")
obj = index_or_series(idx)

arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
tm.assert_index_equal(res, idx)
if index_or_series is Index:
assert res.freq == idx.freq

idx = date_range("2016-06-13", freq="H", periods=12, tz="US/Eastern")
obj = index_or_series(idx)

arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
tm.assert_index_equal(res, idx)
if index_or_series is Index:
assert res.freq == idx.freq

@pytest.mark.parametrize(
"arr, expected",
Expand Down
11 changes: 10 additions & 1 deletion pandas/tests/indexes/timedeltas/test_timedelta.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,17 +75,26 @@ def test_factorize(self):
arr, idx = idx1.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq

arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq

# freq must be preserved
def test_factorize_preserves_freq(self):
# GH#38120 freq should be preserved
idx3 = timedelta_range("1 day", periods=4, freq="s")
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq

arr, idx = pd.factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq

def test_sort_values(self):

Expand Down
10 changes: 10 additions & 0 deletions pandas/tests/indexing/multiindex/test_multiindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,3 +91,13 @@ def test_multiindex_get_loc_list_raises(self):
msg = "unhashable type"
with pytest.raises(TypeError, match=msg):
idx.get_loc([])

def test_multiindex_with_datatime_level_preserves_freq(self):
# https://github.com/pandas-dev/pandas/issues/35563
idx = Index(range(2), name="A")
dti = pd.date_range("2020-01-01", periods=7, freq="D", name="B")
mi = MultiIndex.from_product([idx, dti])
df = DataFrame(np.random.randn(14, 2), index=mi)
result = df.loc[0].index
tm.assert_index_equal(result, dti)
assert result.freq == dti.freq
1 change: 0 additions & 1 deletion pandas/tests/window/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@ def get_result(obj, obj2=None):
result = result.loc[(slice(None), 1), 5]
result.index = result.index.droplevel(1)
expected = get_result(frame[1], frame[5])
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected, check_names=False)


Expand Down