Skip to content

STYLE: Inconsistent namespace - resample #39992 #40220

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 31 additions & 31 deletions pandas/tests/resample/test_datetime_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,20 +125,20 @@ def test_resample_basic(series, closed, expected):
def test_resample_integerarray():
# GH 25580, resample on IntegerArray
ts = Series(
range(9), index=pd.date_range("1/1/2000", periods=9, freq="T"), dtype="Int64"
range(9), index=date_range("1/1/2000", periods=9, freq="T"), dtype="Int64"
)
result = ts.resample("3T").sum()
expected = Series(
[3, 12, 21],
index=pd.date_range("1/1/2000", periods=3, freq="3T"),
index=date_range("1/1/2000", periods=3, freq="3T"),
dtype="Int64",
)
tm.assert_series_equal(result, expected)

result = ts.resample("3T").mean()
expected = Series(
[1, 4, 7],
index=pd.date_range("1/1/2000", periods=3, freq="3T"),
index=date_range("1/1/2000", periods=3, freq="3T"),
dtype="Float64",
)
tm.assert_series_equal(result, expected)
Expand Down Expand Up @@ -529,8 +529,8 @@ def test_resample_ohlc(series):
def test_resample_ohlc_result():

# GH 12332
index = pd.date_range("1-1-2000", "2-15-2000", freq="h")
index = index.union(pd.date_range("4-15-2000", "5-15-2000", freq="h"))
index = date_range("1-1-2000", "2-15-2000", freq="h")
index = index.union(date_range("4-15-2000", "5-15-2000", freq="h"))
s = Series(range(len(index)), index=index)

a = s.loc[:"4-15-2000"].resample("30T").ohlc()
Expand Down Expand Up @@ -805,7 +805,7 @@ def test_resample_bad_offset(offset):
def test_resample_origin_prime_freq():
# GH 31809
start, end = "2000-10-01 23:30:00", "2000-10-02 00:30:00"
rng = pd.date_range(start, end, freq="7min")
rng = date_range(start, end, freq="7min")
ts = Series(np.random.randn(len(rng)), index=rng)

exp_rng = date_range("2000-10-01 23:14:00", "2000-10-02 00:22:00", freq="17min")
Expand Down Expand Up @@ -863,7 +863,7 @@ def test_resample_origin_with_tz():
def test_resample_origin_epoch_with_tz_day_vs_24h():
# GH 34474
start, end = "2000-10-01 23:30:00+0500", "2000-12-02 00:30:00+0500"
rng = pd.date_range(start, end, freq="7min")
rng = date_range(start, end, freq="7min")
random_values = np.random.randn(len(rng))
ts_1 = Series(random_values, index=rng)

Expand All @@ -880,7 +880,7 @@ def test_resample_origin_epoch_with_tz_day_vs_24h():

# check that we have the similar results with two different timezones (+2H and +5H)
start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200"
rng = pd.date_range(start, end, freq="7min")
rng = date_range(start, end, freq="7min")
ts_2 = Series(random_values, index=rng)
result_5 = ts_2.resample("D", origin="epoch").mean()
result_6 = ts_2.resample("24H", origin="epoch").mean()
Expand All @@ -903,7 +903,7 @@ def _create_series(values, timestamps, freq="D"):
# test classical behavior of origin in a DST context
start = Timestamp("2013-11-02", tz=tz)
end = Timestamp("2013-11-03 23:59", tz=tz)
rng = pd.date_range(start, end, freq="1h")
rng = date_range(start, end, freq="1h")
ts = Series(np.ones(len(rng)), index=rng)

expected = _create_series([24.0, 25.0], ["2013-11-02", "2013-11-03"])
Expand All @@ -914,7 +914,7 @@ def _create_series(values, timestamps, freq="D"):
# test complex behavior of origin/offset in a DST context
start = Timestamp("2013-11-03", tz=tz)
end = Timestamp("2013-11-03 23:59", tz=tz)
rng = pd.date_range(start, end, freq="1h")
rng = date_range(start, end, freq="1h")
ts = Series(np.ones(len(rng)), index=rng)

expected_ts = ["2013-11-02 22:00-05:00", "2013-11-03 22:00-06:00"]
Expand Down Expand Up @@ -969,7 +969,7 @@ def test_period_with_agg():
# aggregate a period resampler with a lambda
s2 = Series(
np.random.randint(0, 5, 50),
index=pd.period_range("2012-01-01", freq="H", periods=50),
index=period_range("2012-01-01", freq="H", periods=50),
dtype="float64",
)

Expand Down Expand Up @@ -1003,7 +1003,7 @@ def test_resample_dtype_preservation():

df = DataFrame(
{
"date": pd.date_range(start="2016-01-01", periods=4, freq="W"),
"date": date_range(start="2016-01-01", periods=4, freq="W"),
"group": [1, 1, 2, 2],
"val": Series([5, 6, 7, 8], dtype="int32"),
}
Expand All @@ -1022,7 +1022,7 @@ def test_resample_dtype_coercion():

# GH 16361
df = {"a": [1, 3, 1, 4]}
df = DataFrame(df, index=pd.date_range("2017-01-01", "2017-01-04"))
df = DataFrame(df, index=date_range("2017-01-01", "2017-01-04"))

expected = df.astype("float64").resample("H").mean()["a"].interpolate("cubic")

Expand Down Expand Up @@ -1056,12 +1056,12 @@ def test_nanosecond_resample_error():
# Resampling using pd.tseries.offsets.Nano as period
start = 1443707890427
exp_start = 1443707890400
indx = pd.date_range(start=pd.to_datetime(start), periods=10, freq="100n")
indx = date_range(start=pd.to_datetime(start), periods=10, freq="100n")
ts = Series(range(len(indx)), index=indx)
r = ts.resample(pd.tseries.offsets.Nano(100))
result = r.agg("mean")

exp_indx = pd.date_range(start=pd.to_datetime(exp_start), periods=10, freq="100n")
exp_indx = date_range(start=pd.to_datetime(exp_start), periods=10, freq="100n")
exp = Series(range(len(exp_indx)), index=exp_indx)

tm.assert_series_equal(result, exp)
Expand Down Expand Up @@ -1128,8 +1128,8 @@ def test_resample_anchored_multiday():
#
# See: https://github.com/pandas-dev/pandas/issues/8683

index1 = pd.date_range("2014-10-14 23:06:23.206", periods=3, freq="400L")
index2 = pd.date_range("2014-10-15 23:00:00", periods=2, freq="2200L")
index1 = date_range("2014-10-14 23:06:23.206", periods=3, freq="400L")
index2 = date_range("2014-10-15 23:00:00", periods=2, freq="2200L")
index = index1.union(index2)

s = Series(np.random.randn(5), index=index)
Expand Down Expand Up @@ -1174,7 +1174,7 @@ def test_anchored_lowercase_buglet():

def test_upsample_apply_functions():
# #1596
rng = pd.date_range("2012-06-12", periods=4, freq="h")
rng = date_range("2012-06-12", periods=4, freq="h")

ts = Series(np.random.randn(len(rng)), index=rng)

Expand All @@ -1183,7 +1183,7 @@ def test_upsample_apply_functions():


def test_resample_not_monotonic():
rng = pd.date_range("2012-06-12", periods=200, freq="h")
rng = date_range("2012-06-12", periods=200, freq="h")
ts = Series(np.random.randn(len(rng)), index=rng)

ts = ts.take(np.random.permutation(len(ts)))
Expand Down Expand Up @@ -1255,12 +1255,12 @@ def test_resample_consistency():
# GH 6418
# resample with bfill / limit / reindex consistency

i30 = pd.date_range("2002-02-02", periods=4, freq="30T")
i30 = date_range("2002-02-02", periods=4, freq="30T")
s = Series(np.arange(4.0), index=i30)
s[2] = np.NaN

# Upsample by factor 3 with reindex() and resample() methods:
i10 = pd.date_range(i30[0], i30[-1], freq="10T")
i10 = date_range(i30[0], i30[-1], freq="10T")

s10 = s.reindex(index=i10, method="bfill")
s10_2 = s.reindex(index=i10, method="bfill", limit=2)
Expand Down Expand Up @@ -1364,8 +1364,8 @@ def test_resample_nunique_preserves_column_level_names():

def test_resample_nunique_with_date_gap():
# GH 13453
index = pd.date_range("1-1-2000", "2-15-2000", freq="h")
index2 = pd.date_range("4-15-2000", "5-15-2000", freq="h")
index = date_range("1-1-2000", "2-15-2000", freq="h")
index2 = date_range("4-15-2000", "5-15-2000", freq="h")
index3 = index.append(index2)
s = Series(range(len(index3)), index=index3, dtype="int64")
r = s.resample("M")
Expand Down Expand Up @@ -1462,7 +1462,7 @@ def test_groupby_with_dst_time_change():

df = DataFrame([1, 2], index=index)
result = df.groupby(Grouper(freq="1d")).last()
expected_index_values = pd.date_range(
expected_index_values = date_range(
"2016-11-02", "2016-11-24", freq="d", tz="America/Chicago"
)

Expand Down Expand Up @@ -1587,11 +1587,11 @@ def test_downsample_across_dst_weekly():
)
tm.assert_frame_equal(result, expected)

idx = pd.date_range("2013-04-01", "2013-05-01", tz="Europe/London", freq="H")
idx = date_range("2013-04-01", "2013-05-01", tz="Europe/London", freq="H")
s = Series(index=idx, dtype=np.float64)
result = s.resample("W").mean()
expected = Series(
index=pd.date_range("2013-04-07", freq="W", periods=5, tz="Europe/London"),
index=date_range("2013-04-07", freq="W", periods=5, tz="Europe/London"),
dtype=np.float64,
)
tm.assert_series_equal(result, expected)
Expand All @@ -1601,7 +1601,7 @@ def test_downsample_dst_at_midnight():
# GH 25758
start = datetime(2018, 11, 3, 12)
end = datetime(2018, 11, 5, 12)
index = pd.date_range(start, end, freq="1H")
index = date_range(start, end, freq="1H")
index = index.tz_localize("UTC").tz_convert("America/Havana")
data = list(range(len(index)))
dataframe = DataFrame(data, index=index)
Expand Down Expand Up @@ -1681,7 +1681,7 @@ def f(data, add_arg):
tm.assert_series_equal(result, expected)

# Testing dataframe
df = DataFrame({"A": 1, "B": 2}, index=pd.date_range("2017", periods=10))
df = DataFrame({"A": 1, "B": 2}, index=date_range("2017", periods=10))
result = df.groupby("A").resample("D").agg(f, multiplier)
expected = df.groupby("A").resample("D").mean().multiply(multiplier)
tm.assert_frame_equal(result, expected)
Expand All @@ -1707,7 +1707,7 @@ def test_resample_equivalent_offsets(n1, freq1, n2, freq2, k):
# GH 24127
n1_ = n1 * k
n2_ = n2 * k
s = Series(0, index=pd.date_range("19910905 13:00", "19911005 07:00", freq=freq1))
s = Series(0, index=date_range("19910905 13:00", "19911005 07:00", freq=freq1))
s = s + range(len(s))

result1 = s.resample(str(n1_) + freq1).mean()
Expand Down Expand Up @@ -1797,10 +1797,10 @@ def test_resample_calendar_day_with_dst(
first: str, last: str, freq_in: str, freq_out: str, exp_last: str
):
# GH 35219
ts = Series(1.0, pd.date_range(first, last, freq=freq_in, tz="Europe/Amsterdam"))
ts = Series(1.0, date_range(first, last, freq=freq_in, tz="Europe/Amsterdam"))
result = ts.resample(freq_out).pad()
expected = Series(
1.0, pd.date_range(first, exp_last, freq=freq_out, tz="Europe/Amsterdam")
1.0, date_range(first, exp_last, freq=freq_out, tz="Europe/Amsterdam")
)
tm.assert_series_equal(result, expected)

Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/resample/test_deprecated.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ def _create_index(*args, **kwargs):
def test_deprecating_on_loffset_and_base():
# GH 31809

idx = pd.date_range("2001-01-01", periods=4, freq="T")
idx = date_range("2001-01-01", periods=4, freq="T")
df = DataFrame(data=4 * [range(2)], index=idx, columns=["a", "b"])

with tm.assert_produces_warning(FutureWarning):
Expand Down Expand Up @@ -243,7 +243,7 @@ def test_loffset_returns_datetimeindex(frame, kind, agg_arg):
)
def test_resample_with_non_zero_base(start, end, start_freq, end_freq, base, offset):
# GH 23882
s = Series(0, index=pd.period_range(start, end, freq=start_freq))
s = Series(0, index=period_range(start, end, freq=start_freq))
s = s + np.arange(len(s))
with tm.assert_produces_warning(FutureWarning):
result = s.resample(end_freq, base=base).mean()
Expand Down
26 changes: 12 additions & 14 deletions pandas/tests/resample/test_period_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,9 +224,9 @@ def test_resample_basic(self):
)
def test_resample_count(self, freq, expected_vals):
# GH12774
series = Series(1, index=pd.period_range(start="2000", periods=100))
series = Series(1, index=period_range(start="2000", periods=100))
result = series.resample(freq).count()
expected_index = pd.period_range(
expected_index = period_range(
start="2000", freq=freq, periods=len(expected_vals)
)
expected = Series(expected_vals, index=expected_index)
Expand All @@ -235,9 +235,7 @@ def test_resample_count(self, freq, expected_vals):
def test_resample_same_freq(self, resample_method):

# GH12770
series = Series(
range(3), index=pd.period_range(start="2000", periods=3, freq="M")
)
series = Series(range(3), index=period_range(start="2000", periods=3, freq="M"))
expected = series

result = getattr(series.resample("M"), resample_method)()
Expand All @@ -250,7 +248,7 @@ def test_resample_incompat_freq(self):
)
with pytest.raises(IncompatibleFrequency, match=msg):
Series(
range(3), index=pd.period_range(start="2000", periods=3, freq="M")
range(3), index=period_range(start="2000", periods=3, freq="M")
).resample("W").mean()

def test_with_local_timezone_pytz(self):
Expand All @@ -261,7 +259,7 @@ def test_with_local_timezone_pytz(self):
# 1 day later
end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc)

index = pd.date_range(start, end, freq="H")
index = date_range(start, end, freq="H")

series = Series(1, index=index)
series = series.tz_convert(local_timezone)
Expand All @@ -270,14 +268,14 @@ def test_with_local_timezone_pytz(self):
# Create the expected series
# Index is moved back a day with the timezone conversion from UTC to
# Pacific
expected_index = pd.period_range(start=start, end=end, freq="D") - offsets.Day()
expected_index = period_range(start=start, end=end, freq="D") - offsets.Day()
expected = Series(1, index=expected_index)
tm.assert_series_equal(result, expected)

def test_resample_with_pytz(self):
# GH 13238
s = Series(
2, index=pd.date_range("2017-01-01", periods=48, freq="H", tz="US/Eastern")
2, index=date_range("2017-01-01", periods=48, freq="H", tz="US/Eastern")
)
result = s.resample("D").mean()
expected = Series(
Expand All @@ -302,7 +300,7 @@ def test_with_local_timezone_dateutil(self):
year=2013, month=11, day=2, hour=0, minute=0, tzinfo=dateutil.tz.tzutc()
)

index = pd.date_range(start, end, freq="H", name="idx")
index = date_range(start, end, freq="H", name="idx")

series = Series(1, index=index)
series = series.tz_convert(local_timezone)
Expand All @@ -312,7 +310,7 @@ def test_with_local_timezone_dateutil(self):
# Index is moved back a day with the timezone conversion from UTC to
# Pacific
expected_index = (
pd.period_range(start=start, end=end, freq="D", name="idx") - offsets.Day()
period_range(start=start, end=end, freq="D", name="idx") - offsets.Day()
)
expected = Series(1, index=expected_index)
tm.assert_series_equal(result, expected)
Expand Down Expand Up @@ -343,7 +341,7 @@ def test_resample_nonexistent_time_bin_edge(self):

def test_resample_ambiguous_time_bin_edge(self):
# GH 10117
idx = pd.date_range(
idx = date_range(
"2014-10-25 22:00:00", "2014-10-26 00:30:00", freq="30T", tz="Europe/London"
)
expected = Series(np.zeros(len(idx)), index=idx)
Expand Down Expand Up @@ -827,7 +825,7 @@ def test_resample_with_only_nat(self):
)
def test_resample_with_offset(self, start, end, start_freq, end_freq, offset):
# GH 23882 & 31809
s = Series(0, index=pd.period_range(start, end, freq=start_freq))
s = Series(0, index=period_range(start, end, freq=start_freq))
s = s + np.arange(len(s))
result = s.resample(end_freq, offset=offset).mean()
result = result.to_timestamp(end_freq)
Expand Down Expand Up @@ -869,7 +867,7 @@ def test_get_period_range_edges(self, first, last, freq, exp_first, exp_last):

def test_sum_min_count(self):
# GH 19974
index = pd.date_range(start="2018", freq="M", periods=6)
index = date_range(start="2018", freq="M", periods=6)
data = np.ones(6)
data[3:6] = np.nan
s = Series(data, index).to_period()
Expand Down
Loading