Skip to content

BUG: DatetimeIndex comparison handles NaT incorrectly #7529

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 20, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/v0.14.1.txt
Original file line number Diff line number Diff line change
Expand Up @@ -237,6 +237,7 @@ Bug Fixes
- Bug in when writing Stata files where the encoding was ignored (:issue:`7286`)


- Bug in ``DatetimeIndex`` comparison doesn't handle ``NaT`` properly (:issue:`7529`)


- Bug in passing input with ``tzinfo`` to some offsets ``apply``, ``rollforward`` or ``rollback`` resets ``tzinfo`` or raises ``ValueError`` (:issue:`7465`)
Expand Down
33 changes: 23 additions & 10 deletions pandas/tseries/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,22 +74,35 @@ def wrapper(left, right):
return wrapper


def _dt_index_cmp(opname):
def _dt_index_cmp(opname, nat_result=False):
"""
Wrap comparison operations to convert datetime-like to datetime64
"""
def wrapper(self, other):
func = getattr(super(DatetimeIndex, self), opname)
if isinstance(other, datetime):
if isinstance(other, datetime) or isinstance(other, compat.string_types):
other = _to_m8(other, tz=self.tz)
elif isinstance(other, list):
other = DatetimeIndex(other)
elif isinstance(other, compat.string_types):
other = _to_m8(other, tz=self.tz)
elif not isinstance(other, (np.ndarray, ABCSeries)):
other = _ensure_datetime64(other)
result = func(other)
result = func(other)
if com.isnull(other):
result.fill(nat_result)
else:
if isinstance(other, list):
other = DatetimeIndex(other)
elif not isinstance(other, (np.ndarray, ABCSeries)):
other = _ensure_datetime64(other)
result = func(other)

if isinstance(other, Index):
o_mask = other.values.view('i8') == tslib.iNaT
else:
o_mask = other.view('i8') == tslib.iNaT

if o_mask.any():
result[o_mask] = nat_result

mask = self.asi8 == tslib.iNaT
if mask.any():
result[mask] = nat_result
return result.view(np.ndarray)

return wrapper
Expand Down Expand Up @@ -142,7 +155,7 @@ class DatetimeIndex(DatetimeIndexOpsMixin, Int64Index):
_arrmap = None

__eq__ = _dt_index_cmp('__eq__')
__ne__ = _dt_index_cmp('__ne__')
__ne__ = _dt_index_cmp('__ne__', nat_result=True)
__lt__ = _dt_index_cmp('__lt__')
__gt__ = _dt_index_cmp('__gt__')
__le__ = _dt_index_cmp('__le__')
Expand Down
15 changes: 5 additions & 10 deletions pandas/tseries/period.py
Original file line number Diff line number Diff line change
Expand Up @@ -498,16 +498,11 @@ def dt64arr_to_periodarr(data, freq, tz):

# --- Period index sketch

def _period_index_cmp(opname):
def _period_index_cmp(opname, nat_result=False):
"""
Wrap comparison operations to convert datetime-like to datetime64
"""
def wrapper(self, other):
if opname == '__ne__':
fill_value = True
else:
fill_value = False

if isinstance(other, Period):
func = getattr(self.values, opname)
if other.freq != self.freq:
Expand All @@ -523,7 +518,7 @@ def wrapper(self, other):
mask = (com.mask_missing(self.values, tslib.iNaT) |
com.mask_missing(other.values, tslib.iNaT))
if mask.any():
result[mask] = fill_value
result[mask] = nat_result

return result
else:
Expand All @@ -532,10 +527,10 @@ def wrapper(self, other):
result = func(other.ordinal)

if other.ordinal == tslib.iNaT:
result.fill(fill_value)
result.fill(nat_result)
mask = self.values == tslib.iNaT
if mask.any():
result[mask] = fill_value
result[mask] = nat_result

return result
return wrapper
Expand Down Expand Up @@ -595,7 +590,7 @@ class PeriodIndex(DatetimeIndexOpsMixin, Int64Index):
_allow_period_index_ops = True

__eq__ = _period_index_cmp('__eq__')
__ne__ = _period_index_cmp('__ne__')
__ne__ = _period_index_cmp('__ne__', nat_result=True)
__lt__ = _period_index_cmp('__lt__')
__gt__ = _period_index_cmp('__gt__')
__le__ = _period_index_cmp('__le__')
Expand Down
87 changes: 87 additions & 0 deletions pandas/tseries/tests/test_timeseries.py
Original file line number Diff line number Diff line change
Expand Up @@ -2179,6 +2179,93 @@ def test_comparisons_coverage(self):
exp = rng == rng
self.assert_numpy_array_equal(result, exp)

def test_comparisons_nat(self):
fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0])
fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0])

didx1 = pd.DatetimeIndex(['2014-01-01', pd.NaT, '2014-03-01', pd.NaT,
'2014-05-01', '2014-07-01'])
didx2 = pd.DatetimeIndex(['2014-02-01', '2014-03-01', pd.NaT, pd.NaT,
'2014-06-01', '2014-07-01'])
darr = np.array([np.datetime64('2014-02-01 00:00Z'),
np.datetime64('2014-03-01 00:00Z'),
np.datetime64('nat'), np.datetime64('nat'),
np.datetime64('2014-06-01 00:00Z'),
np.datetime64('2014-07-01 00:00Z')])

if _np_version_under1p7:
# cannot test array because np.datetime('nat') returns today's date
cases = [(fidx1, fidx2), (didx1, didx2)]
else:
cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)]

# Check pd.NaT is handles as the same as np.nan
for idx1, idx2 in cases:
result = idx1 < idx2
expected = np.array([True, False, False, False, True, False])
self.assert_numpy_array_equal(result, expected)
result = idx2 > idx1
expected = np.array([True, False, False, False, True, False])
self.assert_numpy_array_equal(result, expected)

result = idx1 <= idx2
expected = np.array([True, False, False, False, True, True])
self.assert_numpy_array_equal(result, expected)
result = idx2 >= idx1
expected = np.array([True, False, False, False, True, True])
self.assert_numpy_array_equal(result, expected)

result = idx1 == idx2
expected = np.array([False, False, False, False, False, True])
self.assert_numpy_array_equal(result, expected)

result = idx1 != idx2
expected = np.array([True, True, True, True, True, False])
self.assert_numpy_array_equal(result, expected)

for idx1, val in [(fidx1, np.nan), (didx1, pd.NaT)]:
result = idx1 < val
expected = np.array([False, False, False, False, False, False])
self.assert_numpy_array_equal(result, expected)
result = idx1 > val
self.assert_numpy_array_equal(result, expected)

result = idx1 <= val
self.assert_numpy_array_equal(result, expected)
result = idx1 >= val
self.assert_numpy_array_equal(result, expected)

result = idx1 == val
self.assert_numpy_array_equal(result, expected)

result = idx1 != val
expected = np.array([True, True, True, True, True, True])
self.assert_numpy_array_equal(result, expected)

# Check pd.NaT is handles as the same as np.nan
for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]:
result = idx1 < val
expected = np.array([True, False, False, False, False, False])
self.assert_numpy_array_equal(result, expected)
result = idx1 > val
expected = np.array([False, False, False, False, True, True])
self.assert_numpy_array_equal(result, expected)

result = idx1 <= val
expected = np.array([True, False, True, False, False, False])
self.assert_numpy_array_equal(result, expected)
result = idx1 >= val
expected = np.array([False, False, True, False, True, True])
self.assert_numpy_array_equal(result, expected)

result = idx1 == val
expected = np.array([False, False, True, False, False, False])
self.assert_numpy_array_equal(result, expected)

result = idx1 != val
expected = np.array([True, True, False, True, True, True])
self.assert_numpy_array_equal(result, expected)

def test_map(self):
rng = date_range('1/1/2000', periods=10)

Expand Down