Skip to content

BUG: PeriodIndex.min/max returns int #7609

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 29, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/v0.14.1.txt
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,7 @@ Bug Fixes
- Bug in ``DatetimeIndex.asobject`` doesn't preserve ``name`` (:issue:`7299`)
- Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (:issue:`7429`)
- Bug in ``Index.min`` and ``max`` doesn't handle ``nan`` and ``NaT`` properly (:issue:`7261`)
- Bug in ``PeriodIndex.min/max`` results in ``int`` (:issue:`7609`)
- Bug in ``resample`` where ``fill_method`` was ignored if you passed ``how`` (:issue:`7261`)
- Bug in ``TimeGrouper`` doesn't exclude column specified by ``key`` (:issue:`7227`)
- Bug in ``DataFrame`` and ``Series`` bar and barh plot raises ``TypeError`` when ``bottom``
Expand Down
31 changes: 31 additions & 0 deletions pandas/core/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -402,3 +402,34 @@ def tolist(self):
"""
return list(self.asobject)

def min(self, axis=None):
"""
Overridden ndarray.min to return an object
"""
import pandas.tslib as tslib
mask = self.asi8 == tslib.iNaT
masked = self[~mask]
if len(masked) == 0:
return self._na_value
elif self.is_monotonic:
return masked[0]
else:
min_stamp = masked.asi8.min()
return self._box_func(min_stamp)

def max(self, axis=None):
"""
Overridden ndarray.max to return an object
"""
import pandas.tslib as tslib
mask = self.asi8 == tslib.iNaT
masked = self[~mask]
if len(masked) == 0:
return self._na_value
elif self.is_monotonic:
return masked[-1]
else:
max_stamp = masked.asi8.max()
return self._box_func(max_stamp)


77 changes: 65 additions & 12 deletions pandas/tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from pandas.util.testing import assertRaisesRegexp, assert_isinstance
from pandas import Series, Index, Int64Index, DatetimeIndex, PeriodIndex
from pandas import _np_version_under1p7
import pandas.tslib as tslib
import nose

import pandas.util.testing as tm
Expand Down Expand Up @@ -202,7 +203,10 @@ def test_ops(self):
for op in ['max','min']:
for o in self.objs:
result = getattr(o,op)()
expected = getattr(o.values,op)()
if not isinstance(o, PeriodIndex):
expected = getattr(o.values, op)()
else:
expected = pd.Period(ordinal=getattr(o.values, op)(), freq=o.freq)
try:
self.assertEqual(result, expected)
except ValueError:
Expand Down Expand Up @@ -232,17 +236,6 @@ def test_nanops(self):
# check DatetimeIndex non-monotonic path
self.assertEqual(getattr(obj, op)(), datetime(2011, 11, 1))

# explicitly create DatetimeIndex
obj = DatetimeIndex([])
self.assertTrue(pd.isnull(getattr(obj, op)()))

obj = DatetimeIndex([pd.NaT])
self.assertTrue(pd.isnull(getattr(obj, op)()))

obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT])
self.assertTrue(pd.isnull(getattr(obj, op)()))


def test_value_counts_unique_nunique(self):
for o in self.objs:
klass = type(o)
Expand Down Expand Up @@ -552,6 +545,33 @@ def test_asobject_tolist(self):
self.assertEqual(result.name, expected.name)
self.assertEqual(idx.tolist(), expected_list)

def test_minmax(self):
for tz in [None, 'Asia/Tokyo', 'US/Eastern']:
# monotonic
idx1 = pd.DatetimeIndex([pd.NaT, '2011-01-01', '2011-01-02',
'2011-01-03'], tz=tz)
self.assertTrue(idx1.is_monotonic)

# non-monotonic
idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03',
'2011-01-02', pd.NaT], tz=tz)
self.assertFalse(idx2.is_monotonic)

for idx in [idx1, idx2]:
self.assertEqual(idx.min(), pd.Timestamp('2011-01-01', tz=tz))
self.assertEqual(idx.max(), pd.Timestamp('2011-01-03', tz=tz))

for op in ['min', 'max']:
# Return NaT
obj = DatetimeIndex([])
self.assertTrue(pd.isnull(getattr(obj, op)()))

obj = DatetimeIndex([pd.NaT])
self.assertTrue(pd.isnull(getattr(obj, op)()))

obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT])
self.assertTrue(pd.isnull(getattr(obj, op)()))


class TestPeriodIndexOps(Ops):
_allowed = '_allow_period_index_ops'
Expand Down Expand Up @@ -597,6 +617,39 @@ def test_asobject_tolist(self):
self.assertTrue(result_list[2].ordinal, pd.tslib.iNaT)
self.assertTrue(result_list[2].freq, 'D')

def test_minmax(self):

# monotonic
idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02',
'2011-01-03'], freq='D')
self.assertTrue(idx1.is_monotonic)

# non-monotonic
idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03',
'2011-01-02', pd.NaT], freq='D')
self.assertFalse(idx2.is_monotonic)

for idx in [idx1, idx2]:
self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D'))
self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D'))

for op in ['min', 'max']:
# Return NaT
obj = PeriodIndex([], freq='M')
result = getattr(obj, op)()
self.assertEqual(result.ordinal, tslib.iNaT)
self.assertEqual(result.freq, 'M')

obj = PeriodIndex([pd.NaT], freq='M')
result = getattr(obj, op)()
self.assertEqual(result.ordinal, tslib.iNaT)
self.assertEqual(result.freq, 'M')

obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M')
result = getattr(obj, op)()
self.assertEqual(result.ordinal, tslib.iNaT)
self.assertEqual(result.freq, 'M')


if __name__ == '__main__':
import nose
Expand Down
28 changes: 0 additions & 28 deletions pandas/tseries/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -1783,34 +1783,6 @@ def indexer_between_time(self, start_time, end_time, include_start=True,

return mask.nonzero()[0]

def min(self, axis=None):
"""
Overridden ndarray.min to return a Timestamp
"""
mask = self.asi8 == tslib.iNaT
masked = self[~mask]
if len(masked) == 0:
return tslib.NaT
elif self.is_monotonic:
return masked[0]
else:
min_stamp = masked.asi8.min()
return Timestamp(min_stamp, tz=self.tz)

def max(self, axis=None):
"""
Overridden ndarray.max to return a Timestamp
"""
mask = self.asi8 == tslib.iNaT
masked = self[~mask]
if len(masked) == 0:
return tslib.NaT
elif self.is_monotonic:
return masked[-1]
else:
max_stamp = masked.asi8.max()
return Timestamp(max_stamp, tz=self.tz)

def to_julian_date(self):
"""
Convert DatetimeIndex to Float64Index of Julian Dates.
Expand Down
4 changes: 4 additions & 0 deletions pandas/tseries/period.py
Original file line number Diff line number Diff line change
Expand Up @@ -712,6 +712,10 @@ def _simple_new(cls, values, name, freq=None, **kwargs):
result.freq = freq
return result

@property
def _na_value(self):
return self._box_func(tslib.iNaT)

def __contains__(self, key):
if not isinstance(key, Period) or key.freq != self.freq:
if isinstance(key, compat.string_types):
Expand Down