Skip to content

Refactor xarray.conventions into VariableCoder #1752

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Dec 14, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added xarray/coding/__init__.py
Empty file.
194 changes: 194 additions & 0 deletions xarray/coding/variables.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,194 @@
"""Coders for individual Variable objects."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from functools import partial
import warnings

import numpy as np
import pandas as pd

from ..core import dtypes
from ..core import duck_array_ops
from ..core import indexing
from ..core import utils
from ..core.pycompat import dask_array_type
from ..core.variable import Variable


class SerializationWarning(RuntimeWarning):
"""Warnings about encoding/decoding issues in serialization."""


class VariableCoder(object):
"""Base class for encoding and decoding transformations on variables.

We use coders for transforming variables between xarray's data model and
a format suitable for serialization. For example, coders apply CF
conventions for how data should be represented in netCDF files.

Subclasses should implement encode() and decode(), which should satisfy
the identity ``coder.decode(coder.encode(variable)) == variable``. If any
options are necessary, they should be implemented as arguments to the
__init__ method.
"""

def encode(self, variable, name=None):
# type: (Variable, Any) -> Variable
"""Convert an encoded variable to a decoded variable."""
raise NotImplementedError

def decode(self, variable, name=None):
# type: (Variable, Any) -> Variable
"""Convert an decoded variable to a encoded variable."""
raise NotImplementedError


class _ElementwiseFunctionArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Lazily computed array holding values of elemwise-function.

Do not construct this object directly: call lazy_elemwise_func instead.

Values are computed upon indexing or coercion to a NumPy array.
"""

def __init__(self, array, func, dtype):
assert not isinstance(array, dask_array_type)
self.array = indexing.as_indexable(array)
self.func = func
self._dtype = dtype

@property
def dtype(self):
return np.dtype(self._dtype)

def __getitem__(self, key):
return self.func(self.array[key])

def __repr__(self):
return ("%s(%r, func=%r, dtype=%r)" %
(type(self).__name__, self.array, self._func, self._dtype))


def lazy_elemwise_func(array, func, dtype):
"""Lazily apply an element-wise function to an array.

Parameters
----------
array : any valid value of Variable._data
func : callable
Function to apply to indexed slices of an array. For use with dask,
this should be a pickle-able object.
dtype : coercible to np.dtype
Dtype for the result of this function.

Returns
-------
Either a dask.array.Array or _ElementwiseFunctionArray.
"""
if isinstance(array, dask_array_type):
return array.map_blocks(func, dtype=dtype)
else:
return _ElementwiseFunctionArray(array, func, dtype)


def unpack_for_encoding(var):
return var.dims, var.data, var.attrs.copy(), var.encoding.copy()


def unpack_for_decoding(var):
return var.dims, var._data, var.attrs.copy(), var.encoding.copy()


def safe_setitem(dest, key, value, name=None):
if key in dest:
var_str = ' on variable {!r}'.format(name) if name else ''
raise ValueError(
'failed to prevent overwriting existing key {} in attrs{}. '
'This is probably an encoding field used by xarray to describe '
'how a variable is serialized. To proceed, remove this key from '
"the variable's attributes manually.".format(key, var_str))
dest[key] = value


def pop_to(source, dest, key, name=None):
"""
A convenience function which pops a key k from source to dest.
None values are not passed on. If k already exists in dest an
error is raised.
"""
value = source.pop(key, None)
if value is not None:
safe_setitem(dest, key, value, name=name)
return value


def _apply_mask(data, # type: np.ndarray
encoded_fill_values, # type: list
decoded_fill_value # type: Any
): # type: npndarray
"""Mask all matching values in a NumPy arrays."""
condition = False
for fv in encoded_fill_values:
condition |= data == fv
return np.where(condition, decoded_fill_value, data)


class CFMaskCoder(VariableCoder):
"""Mask or unmask fill values according to CF conventions."""

def encode(self, variable, name=None):
dims, data, attrs, encoding = unpack_for_encoding(variable)

if encoding.get('_FillValue') is not None:
fill_value = pop_to(encoding, attrs, '_FillValue', name=name)
if not pd.isnull(fill_value):
data = duck_array_ops.fillna(data, fill_value)
variable = Variable(dims, data, attrs, encoding)

if ('_FillValue' not in attrs and '_FillValue' not in encoding and
np.issubdtype(data.dtype, np.floating)):
attrs['_FillValue'] = data.dtype.type(np.nan)

return Variable(dims, data, attrs, encoding)

def decode(self, variable, name=None):
dims, data, attrs, encoding = unpack_for_decoding(variable)

if 'missing_value' in attrs:
# missing_value is deprecated, but we still want to support it as
# an alias for _FillValue.
if ('_FillValue' in attrs and
not utils.equivalent(attrs['_FillValue'],
attrs['missing_value'])):
raise ValueError("Conflicting _FillValue and missing_value "
"attrs on a variable {!r}: {} vs. {}\n\n"
"Consider opening the offending dataset "
"using decode_cf=False, correcting the "
"attrs and decoding explicitly using "
"xarray.decode_cf()."
.format(name, attrs['_FillValue'],
attrs['missing_value']))
attrs['_FillValue'] = attrs.pop('missing_value')

if '_FillValue' in attrs:
raw_fill_value = pop_to(attrs, encoding, '_FillValue', name=name)
encoded_fill_values = [
fv for fv in np.ravel(raw_fill_value) if not pd.isnull(fv)]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is it even possible to specify a sequence of fill values in a netcdf file?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Apparently? This came from a pull request, though I refactored the logic here slightly.


if len(encoded_fill_values) > 1:
warnings.warn("variable {!r} has multiple fill values {}, "
"decoding all values to NaN."
.format(name, encoded_fill_values),
SerializationWarning, stacklevel=3)

dtype, decoded_fill_value = dtypes.maybe_promote(data.dtype)

if encoded_fill_values:
transform = partial(_apply_mask,
encoded_fill_values=encoded_fill_values,
decoded_fill_value=decoded_fill_value)
data = lazy_elemwise_func(data, transform, dtype)

return Variable(dims, data, attrs, encoding)
39 changes: 39 additions & 0 deletions xarray/tests/test_coding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
import numpy as np
import pytest

import xarray as xr
from xarray.core.pycompat import suppress
from xarray.coding import variables

from . import requires_dask, raises_regex, assert_identical

with suppress(ImportError):
import dask.array as da


def test_CFMaskCoder_decode():
original = xr.Variable(('x',), [0, -1, 1], {'_FillValue': -1})
expected = xr.Variable(('x',), [0, np.nan, 1])
coder = variables.CFMaskCoder()
encoded = coder.decode(original)
assert_identical(expected, encoded)


@requires_dask
def test_CFMaskCoder_decode_dask():
original = xr.Variable(('x',), [0, -1, 1], {'_FillValue': -1}).chunk()
expected = xr.Variable(('x',), [0, np.nan, 1])
coder = variables.CFMaskCoder()
encoded = coder.decode(original)
assert isinstance(encoded.data, da.Array)
assert_identical(expected, encoded)

# TODO(shoyer): port other fill-value tests


# TODO(shoyer): parameterize when we have more coders
def test_coder_roundtrip():
original = xr.Variable(('x',), [0.0, np.nan, 1.0])
coder = variables.CFMaskCoder()
roundtripped = coder.decode(coder.encode(original))
assert_identical(original, roundtripped)