Skip to content

WIP: Automatic label alignment for mathematical operations #184

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 24 additions & 11 deletions test/test_data_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,18 @@ def test_constructor_from_self_described(self):
actual = DataArray(pd.Index(['a', 'b'], name='foo'))
self.assertDataArrayIdentical(expected, actual)

def test_constructor_from_coordinate(self):
values = 10 * np.arange(5)
coord = Coordinate('x', values)
expected = DataArray(values, [values], ['x'], name='x')
actual = DataArray(coord)
self.assertDataArrayIdentical(expected, actual)

def test_constructor_from_0d(self):
expected = Dataset({None: ([], 0)})[None]
actual = DataArray(0)
self.assertDataArrayIdentical(expected, actual)

def test_equals_and_identical(self):
da2 = self.dv.copy()
self.assertTrue(self.dv.equals(da2))
Expand Down Expand Up @@ -324,9 +336,10 @@ def test_is_null(self):
self.assertDataArrayIdentical(~expected, original.notnull())

def test_math(self):
x = self.x
v = self.v
a = self.dv
a = DataArray([np.arange(3), -np.arange(3)],
[[0, 1], ['a', 'b', 'c']], ['x', 'y'])
x = a.values
v = a.variable
# variable math was already tested extensively, so let's just make sure
# that all types are properly converted here
self.assertDataArrayEqual(a, +a)
Expand All @@ -339,12 +352,14 @@ def test_math(self):
self.assertDataArrayEqual(a, a + 0 * a)
self.assertDataArrayEqual(a, 0 * a + a)
# test different indices
ds2 = self.ds.update({'x': ('x', 3 + np.arange(10))}, inplace=False)
b = ds2['foo']
with self.assertRaisesRegexp(ValueError, 'not aligned'):
a + b
with self.assertRaisesRegexp(ValueError, 'not aligned'):
b + a
b = a.dataset.update({'x': ('x', [1, 2])}, inplace=False)[None]
self.assertDataArrayEqual(a[1:], a + 0 * b)
self.assertDataArrayEqual(a[1:], 0 * b + a)
expected = DataArray([[np.nan, np.nan, np.nan], -np.arange(3)],
[[0, 1], ['a', 'b', 'c']], ['x', 'y'])
a += 0 * b
self.assertDataArrayIdentical(a, expected)

with self.assertRaisesRegexp(TypeError, 'datasets do not support'):
a + a.dataset

Expand Down Expand Up @@ -548,8 +563,6 @@ def test_concat(self):

def test_align(self):
self.ds['x'] = ('x', np.array(list('abcdefghij')))
with self.assertRaises(ValueError):
self.dv + self.dv[:5]
dv1, dv2 = align(self.dv, self.dv[:5], join='inner')
self.assertDataArrayIdentical(dv1, self.dv[:5])
self.assertDataArrayIdentical(dv2, self.dv[:5])
Expand Down
4 changes: 2 additions & 2 deletions xray/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ def pretty_print(x, numchars):
def dataset_repr(ds):
summary = ['<xray.%s>' % type(ds).__name__]

max_name_length = max(len(k) for k in ds.variables) if ds else 0
max_name_length = max(len(str(k)) for k in ds.variables) if ds else 0
first_col_width = max(4 + max_name_length, 16)
coords_str = pretty_print('Dimensions:', first_col_width)
all_dim_strings = ['%s: %s' % (k, v) for k, v in iteritems(ds.dimensions)]
Expand All @@ -196,7 +196,7 @@ def summarize_var(k, not_found=' ', found=int):
else:
indicator = not_found
dim_strs.append(pretty_print(prepend + indicator, length))
string = pretty_print(' ' + k, first_col_width) + ' '
string = pretty_print(' %s' % k, first_col_width) + ' '
string += ' '.join(dim_strs)
return string

Expand Down
112 changes: 59 additions & 53 deletions xray/data_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ class DataArray(AbstractArray):
Dictionary of Coordinate objects that label values along each dimension.
"""
def __init__(self, data=None, coordinates=None, dimensions=None, name=None,
attributes=None, encoding=None, dataset=None):
attributes=None, encoding=None, dataset=None, fastpath=False):
"""
Parameters
----------
Expand Down Expand Up @@ -171,27 +171,29 @@ def __init__(self, data=None, coordinates=None, dimensions=None, name=None,
new data array is created from an existing array in this dataset.
"""
if dataset is None:
# try to fill in arguments from data if they weren't supplied
if coordinates is None:
coordinates = getattr(data, 'coordinates', None)
if isinstance(data, pd.Series):
coordinates = [data.index]
elif isinstance(data, pd.DataFrame):
coordinates = [data.index, data.columns]
elif isinstance(data, pd.Panel):
coordinates = [data.items, data.major_axis, data.minor_axis]
if dimensions is None:
dimensions = getattr(data, 'dimensions', None)
if name is None:
name = getattr(data, 'name', None)
if attributes is None:
attributes = getattr(data, 'attrs', None)
if encoding is None:
encoding = getattr(data, 'encoding', None)

data = variable._as_compatible_data(data)
coordinates, dimensions = _infer_coordinates_and_dimensions(
data.shape, coordinates, dimensions)
if not fastpath:
# try to fill in arguments from data if they were nott supplied
if coordinates is None:
coordinates = getattr(data, 'coordinates', None)
if isinstance(data, pd.Series):
coordinates = [data.index]
elif isinstance(data, pd.DataFrame):
coordinates = [data.index, data.columns]
elif isinstance(data, pd.Panel):
coordinates = [data.items, data.major_axis, data.minor_axis]
if dimensions is None:
dimensions = getattr(data, 'dimensions', None)
if name is None:
name = getattr(data, 'name', None)
if attributes is None:
attributes = getattr(data, 'attrs', None)
if encoding is None:
encoding = getattr(data, 'encoding', None)

data = variable._as_compatible_data(data)
coordinates, dimensions = _infer_coordinates_and_dimensions(
data.shape, coordinates, dimensions)

variables = OrderedDict((var.name, var) for var in coordinates)
variables[name] = variable.Variable(
dimensions, data, attributes, encoding)
Expand Down Expand Up @@ -777,12 +779,12 @@ def identical(self, other):
except AttributeError:
return False

def _select_coords(self):
return xray.Dataset(self.coordinates)
# def _select_coords(self):
# return xray.Dataset(self.coordinates)

def __array_wrap__(self, obj, context=None):
new_var = self.variable.__array_wrap__(obj, context)
ds = self._select_coords()
ds = xray.Dataset(self.coordinates)
if (self.name,) == self.dimensions:
# use a new name for coordinate variables
name = None
Expand All @@ -798,42 +800,55 @@ def func(self, *args, **kwargs):
return self.__array_wrap__(f(self.values, *args, **kwargs))
return func

def _check_coords_compat(self, other):
# TODO: possibly automatically select index intersection instead?
if hasattr(other, 'coordinates'):
for k, v in iteritems(self.coordinates):
if (k in other.coordinates
and not v.equals(other.coordinates[k])):
raise ValueError('coordinate %r is not aligned' % k)
# def _check_coords_compat(self, other):
# # TODO: possibly automatically select index intersection instead?
# if hasattr(other, 'coordinates'):
# for k, v in iteritems(self.coordinates):
# if (k in other.coordinates
# and not v.equals(other.coordinates[k])):
# raise ValueError('coordinate %r is not aligned' % k)

@staticmethod
def _binary_op(f, reflexive=False):
@functools.wraps(f)
def func(self, other):
# TODO: automatically group by other variable dimensions to allow
# for broadcasting dimensions like 'dayofyear' against 'time'
self._check_coords_compat(other)
ds = self._select_coords()
if hasattr(other, 'coordinates'):
ds.merge(other.coordinates, inplace=True)
other_array = getattr(other, 'variable', other)

if hasattr(other, 'name') or (self.name,) == self.dimensions:
name = None
else:
name = self.name
ds[name] = (f(self.variable, other_array)
if not reflexive
else f(other_array, self.variable))
return ds[name]

if hasattr(other, 'coordinates'):
self, other = align(self, other, join='inner', copy=False)

other_variable = getattr(other, 'variable', other)
var = (f(self.variable, other_variable)
if not reflexive
else f(other_variable, self.variable))

coords = list(self.coordinates.values())
if hasattr(other, 'coordinates'):
for k, v in iteritems(other.coordinates):
if k not in self.coordinates:
coords.append(v)

return type(self)(var._data, coords, var.dimensions, name,
fastpath=True)
return func

@staticmethod
def _inplace_binary_op(f):
@functools.wraps(f)
def func(self, other):
self._check_coords_compat(other)
other_array = getattr(other, 'variable', other)
self.variable = f(self.variable, other_array)
if hasattr(other, 'coordinates'):
# self, other = align(self, other, join='left', copy=False)
other = other.reindex_like(self, copy=False)

other_variable = getattr(other, 'variable', other)
self.variable = f(self.variable, other_variable)

if hasattr(other, 'coordinates'):
self.dataset.merge(other.coordinates, inplace=True)
return self
Expand Down Expand Up @@ -875,15 +890,6 @@ def align(*objects, **kwargs):
aligned : same as *objects
Tuple of objects with aligned coordinates.
"""
# TODO: automatically align when doing math with dataset arrays?
# TODO: change this to default to join='outer' like pandas?
if 'join' not in kwargs:
warnings.warn('using align without setting explicitly setting the '
"'join' keyword argument. In future versions of xray, "
"the default will likely change from join='inner' to "
"join='outer', to match pandas.",
FutureWarning, stacklevel=2)

join = kwargs.pop('join', 'inner')
copy = kwargs.pop('copy', True)

Expand Down