Skip to content

Add logprob inference for not operations #6689

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 56 additions & 2 deletions pymc/logprob/binary.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,9 @@
from pytensor.graph.basic import Node
from pytensor.graph.fg import FunctionGraph
from pytensor.graph.rewriting.basic import node_rewriter
from pytensor.scalar.basic import GE, GT, LE, LT
from pytensor.scalar.basic import GE, GT, LE, LT, Invert
from pytensor.tensor import TensorVariable
from pytensor.tensor.math import ge, gt, le, lt
from pytensor.tensor.math import ge, gt, invert, le, lt

from pymc.logprob.abstract import (
MeasurableElemwise,
Expand Down Expand Up @@ -136,3 +136,57 @@ def comparison_logprob(op, values, base_rv, operand, **kwargs):
logcdf.name = f"{base_rv_op}_logcdf"

return logprob


class MeasurableBitwise(MeasurableElemwise):
"""A placeholder used to specify a log-likelihood for a bitwise operation RV sub-graph."""

valid_scalar_types = (Invert,)


@node_rewriter(tracks=[invert])
def find_measurable_bitwise(fgraph: FunctionGraph, node: Node) -> Optional[List[MeasurableBitwise]]:
rv_map_feature = getattr(fgraph, "preserve_rv_mappings", None)
if rv_map_feature is None:
return None # pragma: no cover

if isinstance(node.op, MeasurableBitwise):
return None # pragma: no cover

base_var = node.inputs[0]
if not (
base_var.owner
and isinstance(base_var.owner.op, MeasurableVariable)
and base_var not in rv_map_feature.rv_values
):
return None

if not base_var.dtype.startswith("bool"):
raise None

# Make base_var unmeasurable
unmeasurable_base_var = ignore_logprob(base_var)

node_scalar_op = node.op.scalar_op

bitwise_op = MeasurableBitwise(node_scalar_op)
bitwise_rv = bitwise_op.make_node(unmeasurable_base_var).default_output()
bitwise_rv.name = node.outputs[0].name
return [bitwise_rv]


measurable_ir_rewrites_db.register(
"find_measurable_bitwise",
find_measurable_bitwise,
"basic",
"bitwise",
)


@_logprob.register(MeasurableBitwise)
def bitwise_not_logprob(op, values, base_rv, **kwargs):
(value,) = values

logprob = _logprob_helper(base_rv, invert(value), **kwargs)

return logprob
26 changes: 24 additions & 2 deletions tests/logprob/test_binary.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
((pt.gt, pt.ge), "logcdf", "logsf", (0.5, pt.random.normal(0, 1))),
],
)
def test_continuous_rv_comparison(comparison_op, exp_logp_true, exp_logp_false, inputs):
def test_continuous_rv_comparison_bitwise(comparison_op, exp_logp_true, exp_logp_false, inputs):
for op in comparison_op:
comp_x_rv = op(*inputs)

Expand All @@ -48,6 +48,17 @@ def test_continuous_rv_comparison(comparison_op, exp_logp_true, exp_logp_false,
assert np.isclose(logp_fn(0), getattr(ref_scipy, exp_logp_false)(0.5))
assert np.isclose(logp_fn(1), getattr(ref_scipy, exp_logp_true)(0.5))

bitwise_rv = pt.bitwise_not(op(*inputs))
bitwise_vv = bitwise_rv.clone()

logprob_not = logp(bitwise_rv, bitwise_vv)
assert_no_rvs(logprob_not)

logp_fn_not = pytensor.function([bitwise_vv], logprob_not)

assert np.isclose(logp_fn_not(0), getattr(ref_scipy, exp_logp_true)(0.5))
assert np.isclose(logp_fn_not(1), getattr(ref_scipy, exp_logp_false)(0.5))


@pytest.mark.parametrize(
"comparison_op, exp_logp_true, exp_logp_false, inputs",
Expand Down Expand Up @@ -87,7 +98,7 @@ def test_continuous_rv_comparison(comparison_op, exp_logp_true, exp_logp_false,
),
],
)
def test_discrete_rv_comparison(inputs, comparison_op, exp_logp_true, exp_logp_false):
def test_discrete_rv_comparison_bitwise(inputs, comparison_op, exp_logp_true, exp_logp_false):
cens_x_rv = comparison_op(*inputs)

cens_x_vv = cens_x_rv.clone()
Expand All @@ -100,6 +111,17 @@ def test_discrete_rv_comparison(inputs, comparison_op, exp_logp_true, exp_logp_f
assert np.isclose(logp_fn(1), exp_logp_true(3))
assert np.isclose(logp_fn(0), exp_logp_false(3))

bitwise_rv = pt.bitwise_not(comparison_op(*inputs))
bitwise_vv = bitwise_rv.clone()

logprob_not = logp(bitwise_rv, bitwise_vv)
assert_no_rvs(logprob_not)

logp_fn_not = pytensor.function([bitwise_vv], logprob_not)

assert np.isclose(logp_fn_not(1), exp_logp_false(3))
assert np.isclose(logp_fn_not(0), exp_logp_true(3))


def test_potentially_measurable_operand():
x_rv = pt.random.normal(2)
Expand Down