Skip to content

testing autoquant #114

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: gh/HDCharles/4/base
Choose a base branch
from
Open

Conversation

HDCharles
Copy link
Contributor

@HDCharles HDCharles commented Mar 1, 2024

Stack from ghstack (oldest at bottom):

Summary:

improves runtime by 19.70 -> 19.76 img/sec

Test Plan: sh run.sh

Reviewers:

Subscribers:

Tasks:

Tags:

Summary:

improves runtime by 19.70 -> 19.76 img/sec

❯ one sh run.sh
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00,  6.14s/it]
sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path
vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00,  6.70s/it]
vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164
shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157
shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365
shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353
shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827
shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017
shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00,  2.12s/it]
vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit that referenced this pull request Mar 1, 2024
Summary:

improves runtime by 19.70 -> 19.76 img/sec

❯ one sh run.sh
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00,  6.14s/it]
sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path
vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00,  6.70s/it]
vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164
shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157
shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365
shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353
shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827
shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017
shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00,  2.12s/it]
vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: ac0ddc1
Pull Request resolved: #114
@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Mar 1, 2024
Summary:

improves runtime by 19.70 -> 19.76 img/sec

❯ one sh run.sh
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00,  6.14s/it]
sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path
vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00,  6.70s/it]
vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164
shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157
shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365
shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353
shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827
shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017
shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00,  2.12s/it]
vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit that referenced this pull request Mar 5, 2024
Summary:

improves runtime by 19.70 -> 19.76 img/sec

❯ one sh run.sh
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00,  6.14s/it]
sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path
vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00,  6.70s/it]
vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164
shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157
shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365
shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353
shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827
shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017
shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00,  2.12s/it]
vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: a9134d6
Pull Request resolved: #114
@HDCharles HDCharles mentioned this pull request Mar 5, 2024
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 5, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
(pytorch-labs/segment-anything-fast#114,
huggingface/diffusion-fast@176e85f)

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 5, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
(pytorch-labs/segment-anything-fast#114,
huggingface/diffusion-fast@176e85f)

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 3986099
Pull Request resolved: #38
Summary:

improves runtime by 19.70 -> 19.76 img/sec

❯ one sh run.sh
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [06:32<00:00,  6.14s/it]
sam_model_type,batch_size,memory(MiB),memory(%),img_s(avg),batch_ms(avg)/batch_size,mIoU,use_compile,use_half,compress,epilogue_fusion_first,use_compile_decoder,use_nested_tensor,use_rel_pos,pad_input_image_batch,num_workers,num_batches,num_images,profile_path,memory_path
vit_h,16,14532,17,18.861125832244333,53.01910442113876,0.5865236891447146,max-autotune,torch.bfloat16,None,False,False,True,True,True,32,64,1024,None,None
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [07:08<00:00,  6.70s/it]
vit_h,16,14395,17,19.70834741975898,50.73992145061493,0.5875230894143607,max-autotune,torch.bfloat16,dynamic_quant,False,False,True,True,True,32,64,1024,None,None
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.850527899339795
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.3931088875979185 3.190660197287798
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.768232116475701
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.8598313461989164
shape=(torch.Size([78400, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.4865157660096884
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.8800818361341953 1.179535873234272
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.7427184619009497
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.4965661568567157
shape=(torch.Size([78400, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.215262923389673
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.661373794078827 3.485689079388976
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 5.220260447822511
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.2220821138471365
shape=(torch.Size([65536, 1280]), torch.Size([5120, 1280]), torch.Size([5120])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 4.666170105338097
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 4.113288130611181 2.626298717223108
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 4.855024302378297
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 4.674202110618353
shape=(torch.Size([65536, 5120]), torch.Size([1280, 5120]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 3.2269158866256475
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 3.7462301552295685 2.6572815608233213
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 3.9978391956537966
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 3.2370124012231827
shape=(torch.Size([65536, 1280]), torch.Size([3840, 1280]), torch.Size([3840])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'>
<class 'torchao.quantization.autoquant.AQFloatLinearWeight'> 1.2530277017503977
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748
<class 'torchao.quantization.autoquant.AQInt8DynamicallyQuantizedLinearWeight'> 1.5717314090579748 0.9894231799989939
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight'> 1.5166664496064186
<class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight3'> 1.2606457574293017
shape=(torch.Size([65536, 1280]), torch.Size([1280, 1280]), torch.Size([1280])), dtype=torch.bfloat16, best_cls=<class 'torchao.quantization.autoquant.AQFloatLinearWeight'>
  0%|                                                                                                                                                                                                              | 0/64 [00:00<?, ?it/s]/home/cdhernandez/local/pytorch/torch/nested/__init__.py:166: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /home/cdhernandez/local/pytorch/aten/src/ATen/NestedTensorImpl.cpp:177.)
  return _nested.nested_tensor(
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64/64 [02:15<00:00,  2.12s/it]
vit_h,16,14463,17,19.76190752324237,50.602402567863464,0.5875653903095147,max-autotune,torch.bfloat16,auto_quant,False,False,True,True,True,32,64,1024,None,None

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit that referenced this pull request Mar 19, 2024
Summary:

improves runtime by 19.70 -> 19.76 img/sec

Test Plan: sh run.sh

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 9c6098e
Pull Request resolved: #114
Summary:

improves runtime by 19.70 -> 19.76 img/sec

Test Plan: sh run.sh

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit that referenced this pull request Mar 19, 2024
Summary:

improves runtime by 19.70 -> 19.76 img/sec

Test Plan: sh run.sh

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 9c6098e
Pull Request resolved: #114
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 0dbb2ff
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: fddbaf2
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: f268031
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 94089f7
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 94089f7
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 94089f7
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 19, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 3768385
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 3c1199d
Pull Request resolved: #38
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55103983](https://our.internmc.facebook.com/intern/diff/D55103983)

[ghstack-poisoned]
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
@HDCharles HDCharles mentioned this pull request Mar 25, 2024
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 3c1199d
Pull Request resolved: #81
@HDCharles HDCharles mentioned this pull request Mar 25, 2024
HDCharles added a commit to pytorch/ao that referenced this pull request Mar 25, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
cpuhrsch pushed a commit to pytorch/ao that referenced this pull request Apr 1, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
dbyoung18 pushed a commit to dbyoung18/ao that referenced this pull request Jul 31, 2024
Summary: Adding autoquantization functionality, using hte do_quant api
we can test kernel speeds and pick the best quantization type (or no
quantization) for each layer.

Test Plan: python test/test.py -k "autoquant"

also tested on SAM and SDXL
pytorch-labs/segment-anything-fast#114
HDCharles/sdxl-fast@8d9942a

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants