Skip to content
Draft
27 changes: 27 additions & 0 deletions examples/torchtune/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# torchtune Examples
Examples to tune language models using [torchtune](https://github.com/pytorch/torchtune).

## Setup
1. Follow the [torchao Installation](../../README.md#installation) steps.

2. Install `torchtune`:
```
pip install torchtune
```

## Run
1. Download a model (see more details [here](https://github.com/pytorch/torchtune#downloading-a-model)):
```
tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf
```

2. Finetune:
- To finetune on a single device:
```
tune run --nproc_per_node 1 full_finetune_single_device.py --config ./configs/full_finetune.yaml
```

- To finetune on multiple GPUs:
```
tune run --nproc_per_node 8 full_finetune_distributed.py --config ./configs/full_finetune.yaml
```
105 changes: 105 additions & 0 deletions examples/torchtune/configs/full_finetune.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a Llama2 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN>
#
# To launch on 4 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config llama2/7B_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config llama2/7B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# Single device full finetuning requires more memory optimizations. It's
# best to use 7B_full_single_device.yaml for those cases


# Tokenizer
tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-7b-hf/tokenizer.model
max_seq_len: null

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_dataset
packed: False # True increases speed
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.llama2.llama2_7b

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-7b-hf
checkpoint_files: [
pytorch_model-00001-of-00002.bin,
pytorch_model-00002-of-00002.bin
]
recipe_checkpoint: null
output_dir: /tmp/Llama-2-7b-hf
model_type: LLAMA2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 1 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1

# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/alpaca-llama2-finetune
log_every_n_steps: 1
log_peak_memory_stats: True

# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
Loading