Skip to content

Conversation

@andrewor14
Copy link
Contributor

@andrewor14 andrewor14 commented Jul 30, 2025

Stack from ghstack (oldest at bottom):

Summary: Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

Test Plan:

python test/quantization/test_qat.py -k test_qat_api_deprecation

Also manual testing:

>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see https://github.com/pytorch/ao/issues/2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)

 **Summary:** The existing `FakeQuantizeConfig` performs only
intx quantization, but we plan to extend QAT to other dtypes
such as fp8 and nvfp4 in the near future. This is the necessary
refactor before that. Specifically:

```
# New abstract class
FakeQuantizeConfigBase
# Rename
FakeQuantizeConfig -> IntxFakeQuantizeConfig
```

In the future, we will have other types of `FakeQuantizeConfigBase`
for float dtypes that users can pass in instead of the existing
Intx one.

**BC-breaking notes:** For BC, we keep around the old names to
reference the new ones. However, this commit is still BC-breaking
in the sense that a few APIs now accept the abstract
`FakeQuantizeConfigBase` instead. For the most part, this abstract
class will be hidden from the user.

Before:
```
activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = FakeQuantizeConfig(torch.int4, group_size=32)
```

After:
```
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
```

**Test Plan:**
python test/quantization/test_qat.py

[ghstack-poisoned]
**Summary:** This commit adds a new multi-step QAT API with the
main goal of simplifying the existing UX. The new API uses the
same `QATConfig` for both the prepare and convert steps, and
automatically infers the fake quantization configs based on
a PTQ base config provided by the user:

```
from torchao.quantization import (
    quantize_,
    Int8DynamicActivationInt4WeightConfig
)
from torchao.quantization.qat import QATConfig

\# prepare
base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
qat_config = QATConfig(base_config, step="prepare")
quantize_(m, qat_config)

\# train (not shown)

\# convert
quantize_(m, QATConfig(base_config, step="convert"))
```

The main improvements include:
- A single config for both prepare and convert steps
- A single quantize_ for convert (instead of 2)
- No chance for incompatible prepare vs convert configs
- Much less boilerplate code for most common use case
- Simpler config names

For less common use cases such as experimentation, users can
still specify arbitrary fake quantization configs for
activations and/or weights as before. This is still important
since there may not always be a corresponding PTQ base config.
For example:

```
from torchao.quantization import quantize_
from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig

activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = QATConfig(
    activation_config=activation_config,
    weight_config=weight_config,
    step="prepare",
)
quantize_(model, qat_config)

\# train and convert same as above (not shown)
```

**BC-breaking notes:** This change by itself is technically not
BC-breaking since we keep around the old path, but will become
so when we deprecate and remove the old path in the future.

Before:
```
\# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(model, qat_config)

\# train (not shown)

\# convert
quantize_(model, FromIntXQuantizationAwareTrainingConfig())
quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32))
```

After: (see above)

**Test Plan:**
```
python test/quantization/test_qat.py
```

[ghstack-poisoned]
**Summary:** This commit adds a new multi-step QAT API with the
main goal of simplifying the existing UX. The new API uses the
same `QATConfig` for both the prepare and convert steps, and
automatically infers the fake quantization configs based on
a PTQ base config provided by the user:

```
from torchao.quantization import (
    quantize_,
    Int8DynamicActivationInt4WeightConfig
)
from torchao.quantization.qat import QATConfig

# prepare
base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
quantize_(m, QATConfig(base_config, step="prepare"))

# train (not shown)

# convert
quantize_(m, QATConfig(base_config, step="convert"))
```

The main improvements include:
- A single config for both prepare and convert steps
- A single quantize_ for convert (instead of 2)
- No chance for incompatible prepare vs convert configs
- Much less boilerplate code for most common use case
- Simpler config names

For less common use cases such as experimentation, users can
still specify arbitrary fake quantization configs for
activations and/or weights as before. This is still important
since there may not always be a corresponding PTQ base config.
For example:

```
from torchao.quantization import quantize_
from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig

# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = QATConfig(
    activation_config=activation_config,
    weight_config=weight_config,
    step="prepare",
)
quantize_(model, qat_config)

# train and convert same as above (not shown)
```

**BC-breaking notes:** This change by itself is technically not
BC-breaking since we keep around the old path, but will become
so when we deprecate and remove the old path in the future.

Before:
```
# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(model, qat_config)

# train (not shown)

# convert
quantize_(model, FromIntXQuantizationAwareTrainingConfig())
quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32))
```

After: (see above)

**Test Plan:**
```
python test/quantization/test_qat.py
```

[ghstack-poisoned]
**Summary:** This commit adds a new multi-step QAT API with the
main goal of simplifying the existing UX. The new API uses the
same `QATConfig` for both the prepare and convert steps, and
automatically infers the fake quantization configs based on
a PTQ base config provided by the user:

```
from torchao.quantization import (
    quantize_,
    Int8DynamicActivationInt4WeightConfig
)
from torchao.quantization.qat import QATConfig

# prepare
base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
quantize_(m, QATConfig(base_config, step="prepare"))

# train (not shown)

# convert
quantize_(m, QATConfig(base_config, step="convert"))
```

The main improvements include:
- A single config for both prepare and convert steps
- A single quantize_ for convert (instead of 2)
- No chance for incompatible prepare vs convert configs
- Much less boilerplate code for most common use case
- Simpler config names

For less common use cases such as experimentation, users can
still specify arbitrary fake quantization configs for
activations and/or weights as before. This is still important
since there may not always be a corresponding PTQ base config.
For example:

```
from torchao.quantization import quantize_
from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig

# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = QATConfig(
    activation_config=activation_config,
    weight_config=weight_config,
    step="prepare",
)
quantize_(model, qat_config)

# train and convert same as above (not shown)
```

**BC-breaking notes:** This change by itself is technically not
BC-breaking since we keep around the old path, but will become
so when we deprecate and remove the old path in the future.

Before:
```
# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(model, qat_config)

# train (not shown)

# convert
quantize_(model, FromIntXQuantizationAwareTrainingConfig())
quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32))
```

After: (see above)

**Test Plan:**
```
python test/quantization/test_qat.py
```

[ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

[ghstack-poisoned]
@pytorch-bot
Copy link

pytorch-bot bot commented Jul 30, 2025

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/ao/2641

Note: Links to docs will display an error until the docs builds have been completed.

✅ You can merge normally! (2 Unrelated Failures)

As of commit 3f06429 with merge base 5f3ab63 (image):

BROKEN TRUNK - The following jobs failed but were present on the merge base:

👉 Rebase onto the `viable/strict` branch to avoid these failures

This comment was automatically generated by Dr. CI and updates every 15 minutes.

andrewor14 added a commit that referenced this pull request Jul 30, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

ghstack-source-id: f6988d7
Pull Request resolved: #2641
@meta-cla meta-cla bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Jul 30, 2025
@andrewor14 andrewor14 added the topic: improvement Use this tag if this PR is an improvement (doesn't fit into any of the other categories) label Jul 30, 2025
andrewor14 added a commit that referenced this pull request Jul 30, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

ghstack-source-id: f6988d7
Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

[ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Jul 30, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

ghstack-source-id: f6988d7
Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Jul 30, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

ghstack-source-id: f6988d7
Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Jul 30, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

ghstack-source-id: ac1b30e
Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Jul 30, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

ghstack-source-id: bb3fc80
Pull Request resolved: #2641
andrewor14 added a commit that referenced this pull request Jul 31, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

ghstack-source-id: bb3fc80
Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
@andrewor14 andrewor14 changed the base branch from gh/andrewor14/15/base to main August 4, 2025 16:59
@andrewor14 andrewor14 merged commit eb3f4aa into main Aug 5, 2025
33 of 38 checks passed
andrewor14 added a commit that referenced this pull request Aug 18, 2025
**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

ghstack-source-id: 33a6f38
Pull Request resolved: #2641
liangel-02 pushed a commit that referenced this pull request Aug 25, 2025
* [bc-breaking] Generalize FakeQuantizeConfig beyond intx

 **Summary:** The existing `FakeQuantizeConfig` performs only
intx quantization, but we plan to extend QAT to other dtypes
such as fp8 and nvfp4 in the near future. This is the necessary
refactor before that. Specifically:

```
# New abstract class
FakeQuantizeConfigBase
# Rename
FakeQuantizeConfig -> IntxFakeQuantizeConfig
```

In the future, we will have other types of `FakeQuantizeConfigBase`
for float dtypes that users can pass in instead of the existing
Intx one.

**BC-breaking notes:** For BC, we keep around the old names to
reference the new ones. However, this commit is still BC-breaking
in the sense that a few APIs now accept the abstract
`FakeQuantizeConfigBase` instead. For the most part, this abstract
class will be hidden from the user.

Before:
```
activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = FakeQuantizeConfig(torch.int4, group_size=32)
```

After:
```
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
```

**Test Plan:**
python test/quantization/test_qat.py

[ghstack-poisoned]

* New multi-step QAT API

**Summary:** This commit adds a new multi-step QAT API with the
main goal of simplifying the existing UX. The new API uses the
same `QATConfig` for both the prepare and convert steps, and
automatically infers the fake quantization configs based on
a PTQ base config provided by the user:

```
from torchao.quantization import (
    quantize_,
    Int8DynamicActivationInt4WeightConfig
)
from torchao.quantization.qat import QATConfig

\# prepare
base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
qat_config = QATConfig(base_config, step="prepare")
quantize_(m, qat_config)

\# train (not shown)

\# convert
quantize_(m, QATConfig(base_config, step="convert"))
```

The main improvements include:
- A single config for both prepare and convert steps
- A single quantize_ for convert (instead of 2)
- No chance for incompatible prepare vs convert configs
- Much less boilerplate code for most common use case
- Simpler config names

For less common use cases such as experimentation, users can
still specify arbitrary fake quantization configs for
activations and/or weights as before. This is still important
since there may not always be a corresponding PTQ base config.
For example:

```
from torchao.quantization import quantize_
from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig

activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = QATConfig(
    activation_config=activation_config,
    weight_config=weight_config,
    step="prepare",
)
quantize_(model, qat_config)

\# train and convert same as above (not shown)
```

**BC-breaking notes:** This change by itself is technically not
BC-breaking since we keep around the old path, but will become
so when we deprecate and remove the old path in the future.

Before:
```
\# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(model, qat_config)

\# train (not shown)

\# convert
quantize_(model, FromIntXQuantizationAwareTrainingConfig())
quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32))
```

After: (see above)

**Test Plan:**
```
python test/quantization/test_qat.py
```

[ghstack-poisoned]

* Update on "New multi-step QAT API"


**Summary:** This commit adds a new multi-step QAT API with the
main goal of simplifying the existing UX. The new API uses the
same `QATConfig` for both the prepare and convert steps, and
automatically infers the fake quantization configs based on
a PTQ base config provided by the user:

```
from torchao.quantization import (
    quantize_,
    Int8DynamicActivationInt4WeightConfig
)
from torchao.quantization.qat import QATConfig

# prepare
base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
quantize_(m, QATConfig(base_config, step="prepare"))

# train (not shown)

# convert
quantize_(m, QATConfig(base_config, step="convert"))
```

The main improvements include:
- A single config for both prepare and convert steps
- A single quantize_ for convert (instead of 2)
- No chance for incompatible prepare vs convert configs
- Much less boilerplate code for most common use case
- Simpler config names

For less common use cases such as experimentation, users can
still specify arbitrary fake quantization configs for
activations and/or weights as before. This is still important
since there may not always be a corresponding PTQ base config.
For example:

```
from torchao.quantization import quantize_
from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig

# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = QATConfig(
    activation_config=activation_config,
    weight_config=weight_config,
    step="prepare",
)
quantize_(model, qat_config)

# train and convert same as above (not shown)
```

**BC-breaking notes:** This change by itself is technically not
BC-breaking since we keep around the old path, but will become
so when we deprecate and remove the old path in the future.

Before:
```
# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(model, qat_config)

# train (not shown)

# convert
quantize_(model, FromIntXQuantizationAwareTrainingConfig())
quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32))
```

After: (see above)

**Test Plan:**
```
python test/quantization/test_qat.py
```

[ghstack-poisoned]

* Update on "New multi-step QAT API"


**Summary:** This commit adds a new multi-step QAT API with the
main goal of simplifying the existing UX. The new API uses the
same `QATConfig` for both the prepare and convert steps, and
automatically infers the fake quantization configs based on
a PTQ base config provided by the user:

```
from torchao.quantization import (
    quantize_,
    Int8DynamicActivationInt4WeightConfig
)
from torchao.quantization.qat import QATConfig

# prepare
base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
quantize_(m, QATConfig(base_config, step="prepare"))

# train (not shown)

# convert
quantize_(m, QATConfig(base_config, step="convert"))
```

The main improvements include:
- A single config for both prepare and convert steps
- A single quantize_ for convert (instead of 2)
- No chance for incompatible prepare vs convert configs
- Much less boilerplate code for most common use case
- Simpler config names

For less common use cases such as experimentation, users can
still specify arbitrary fake quantization configs for
activations and/or weights as before. This is still important
since there may not always be a corresponding PTQ base config.
For example:

```
from torchao.quantization import quantize_
from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig

# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = QATConfig(
    activation_config=activation_config,
    weight_config=weight_config,
    step="prepare",
)
quantize_(model, qat_config)

# train and convert same as above (not shown)
```

**BC-breaking notes:** This change by itself is technically not
BC-breaking since we keep around the old path, but will become
so when we deprecate and remove the old path in the future.

Before:
```
# prepare
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(model, qat_config)

# train (not shown)

# convert
quantize_(model, FromIntXQuantizationAwareTrainingConfig())
quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32))
```

After: (see above)

**Test Plan:**
```
python test/quantization/test_qat.py
```

[ghstack-poisoned]

* Deprecate old QAT APIs

**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]

* Update base for Update on "Deprecate old QAT APIs"


**Summary:** Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.

**Test Plan:**
```
python test/quantization/test_qat.py -k test_qat_api_deprecation
```

Also manual testing:
```
>>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig
>>> IntXQuantizationAwareTrainingConfig()
'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead:

    base_config = Int8DynamicActivationInt4WeightConfig(group_size=32)
    quantize_(model, QATConfig(base_config, step="prepare"))
    # train (not shown)
    quantize_(model, QATConfig(base_config, step="convert"))

Alternatively, if you prefer to pass in fake quantization configs:

    activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
    weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
    qat_config = QATConfig(
        activation_config=activation_config,
        weight_config=weight_config,
        step="prepare",
    )
    quantize_(model, qat_config)

Please see #2630 for more details.

IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None)
```

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Oct 10, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Oct 10, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: b22f940
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: b22f940
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: de20afc
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: de20afc
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Oct 13, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: d0abb07
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: 8ddff9e
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: dd9015a
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: 722a3f6
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI

ghstack-source-id: 1cdef82
Pull Request resolved: #3147
andrewor14 added a commit that referenced this pull request Nov 7, 2025
**Summary:** As a follow-up to #2641,
which deprecated the old QAT APIs in 0.13.0, we remove them now
in the next release 0.15.0.

Fixes #2630.

**Test Plan:** CI
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. topic: improvement Use this tag if this PR is an improvement (doesn't fit into any of the other categories)

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants