Skip to content

Paged attention #425

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 22 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
204 changes: 204 additions & 0 deletions test/kernel/test_paged_attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
import torch
import unittest
import random
from itertools import product
import torchao
from torchao.kv_cache import PagedAttentionCache, PagedTensor

class NaiveCache:
def __init__(self):
self.past_key = None
self.past_value = None

def expand_cache(self, beam_size):
self.past_key = self.past_key.repeat_interleave(beam_size, dim=0)
self.past_value = self.past_value.repeat_interleave(beam_size, dim=0)

def update(self, key, value, layer_idx=0):
if self.past_key is None:
self.past_key = key
self.past_value = value
else:
self.past_key = torch.cat((self.past_key, key), dim=2)
self.past_value = torch.cat((self.past_value, value), dim=2)
return self.past_key, self.past_value

def reorder_cache(self, beam_idx):
self.past_key = self.past_key.index_select(0, beam_idx)
self.past_value = self.past_value.index_select(0, beam_idx)


class MHAModule(torch.nn.Module):
def __init__(self, head_dim, num_heads, num_kv_heads):
super(MHAModule, self).__init__()
self.head_dim = head_dim
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.scale = head_dim**-0.5
self.q = torch.nn.Linear(
self.num_heads * self.head_dim, self.num_heads * self.head_dim
)
self.k = torch.nn.Linear(
self.num_heads * self.head_dim, self.num_kv_heads * self.head_dim
)
self.v = torch.nn.Linear(
self.num_heads * self.head_dim, self.num_kv_heads * self.head_dim
)

def forward(self, inputs, kv_cache):
query = self.q(inputs)
key = self.k(inputs)
value = self.v(inputs)
batch_size = inputs.size(0)
query = query.view(batch_size, -1, self.num_heads, self.head_dim).transpose(
1, 2
)
key = key.view(batch_size, -1, self.num_kv_heads, self.head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.num_kv_heads, self.head_dim).transpose(
1, 2
)
updated_key, updated_value = kv_cache.update(key, value, 0)
if not isinstance(updated_key, PagedTensor):
updated_key = updated_key.repeat_interleave(
self.num_heads // self.num_kv_heads, dim=1
)
updated_value = updated_value.repeat_interleave(
self.num_heads // self.num_kv_heads, dim=1
)
return torch.nn.functional.scaled_dot_product_attention(
query, updated_key, updated_value, scale=self.scale
)


@unittest.skipIf(torch.cuda.is_available(), "CUDA is not enabled yet")
class PagedAttentionCachePagedTensorTest(unittest.TestCase):
def _test_paged_attention_cache(
self,
num_blocks,
block_size,
num_query_heads,
num_key_value_heads,
head_dim,
device,
dtype,
batch_size,
beam_size,
):
num_layers = 1
prompt_len = 32
mha_model = MHAModule(head_dim, num_query_heads, num_key_value_heads).to(
device=device, dtype=dtype
)
naive_cache = NaiveCache()
pagedcache = PagedAttentionCache(
num_blocks,
block_size,
num_key_value_heads,
head_dim,
num_layers,
device,
dtype,
)
# enable prompt sharing for the first token, fork
pagedcache.set_batch2seq_for_prompt_sharing(batch_size, beam_size)
pagedcache.allocate(batch_size, prompt_len)
prompt_inputs = torch.randn(
batch_size,
prompt_len,
num_query_heads * head_dim,
device=device,
dtype=dtype,
)
paged_output = mha_model(prompt_inputs, pagedcache)
naive_output = mha_model(prompt_inputs, naive_cache)
torch.allclose(paged_output, naive_output)

beam_idx = torch.arange(
0, batch_size * beam_size, beam_size, device=device, dtype=torch.int64
).repeat_interleave(beam_size)
naive_cache.expand_cache(beam_size)
naive_cache.reorder_cache(beam_idx)
pagedcache.reorder_cache(beam_idx)

# Next token
pagedcache.allocate(batch_size * beam_size, 1)
next_inputs = torch.randn(
batch_size * beam_size,
1,
num_query_heads * head_dim,
device=device,
dtype=dtype,
)

paged_output = mha_model(next_inputs, pagedcache)
naive_output = mha_model(next_inputs, naive_cache)
torch.allclose(paged_output, naive_output, atol=1e-3, rtol=1e-3)

for i in range(batch_size):
beam_idx[i * beam_size : (i + 1) * beam_size] = torch.randint(
i * beam_size,
(i + 1) * beam_size,
(1, beam_size),
device=device,
dtype=torch.int64,
)
naive_cache.reorder_cache(beam_idx)
pagedcache.reorder_cache(beam_idx)

# Next token
pagedcache.allocate(batch_size * beam_size, 1)
prompt_inputs = torch.randn(
batch_size * beam_size,
1,
num_query_heads * head_dim,
device=device,
dtype=dtype,
)
paged_output = mha_model(prompt_inputs, pagedcache)
naive_output = mha_model(prompt_inputs, naive_cache)
torch.allclose(paged_output, naive_output, atol=1e-3, rtol=1e-3)

def test_paged_attention_kv_cache(self):
# num_blocks, block_size, num_query_heads, num_key_value_heads, head_dim, device, dtype, batch_size, beam_size
num_blocks = 128
block_sizes = [16, 32]
num_query_heads = [40]
num_key_value_heads = [40, 10, 1]
head_dim = [64, 128]
device = ['cpu']
dtypes = [torch.bfloat16, torch.float16]
batch_size = [1, 8]
beam_size = [1, 4]
for (
block_size,
num_query_head,
num_key_value_head,
head_dim,
device,
dtype,
batch_size,
beam_size,
) in product(
block_sizes,
num_query_heads,
num_key_value_heads,
head_dim,
device,
dtypes,
batch_size,
beam_size,
):
self._test_paged_attention_cache(
num_blocks,
block_size,
num_query_head,
num_key_value_head,
head_dim,
device,
dtype,
batch_size,
beam_size,
)

if __name__ == "__main__":
test = unittest.main()
3 changes: 3 additions & 0 deletions torchao/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,12 @@
)
from . import dtypes

from torchao.kv_cache import PagedAttentionCache, PagedTensor
__all__ = [
"dtypes",
"autoquant",
"PagedAttentionCache",
"PagedTensor"
"quantize_",
]

Expand Down
Loading