Skip to content

[Executorch][llama] bug fix for custom sdpa for attention bias #10340

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 21, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion extension/llm/custom_ops/op_sdpa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -400,7 +400,8 @@ Tensor& custom_sdpa_out_impl(

ET_CHECK_MSG(q.dim() == 4, "query must be a 4D tensor");

const int64_t num_keys_for_causal_attention = start_pos + seq_len;
const int64_t num_keys_for_causal_attention =
attn_mask.has_value() ? -1 : start_pos + seq_len;

ET_KERNEL_CHECK(
ctx,
Expand Down
283 changes: 0 additions & 283 deletions extension/llm/custom_ops/op_sdpa_with_kv_cache_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -524,289 +524,6 @@ TEST(OpScaledDotProductAttentionTest, LargerTest) {
EXPECT_TENSOR_CLOSE_WITH_TOL(ret, ret_expected_5, 1e-4, 1e-4);
}

TEST(OpScaledDotProductAttentionTest, BasicTestWithAttnMask) {
TensorFactory<executorch::aten::ScalarType::Float> tfFloat;

executorch::aten::Tensor query = tfFloat.make(
{1, 1, 4, 4},
{0.8823,
0.9150,
0.3829,
0.9593,
0.3904,
0.6009,
0.2566,
0.7936,
0.9408,
0.1332,
0.9346,
0.5936,
0.8694,
0.5677,
0.7411,
0.4294});
executorch::aten::Tensor key = tfFloat.make(
{1, 1, 4, 4},
{0.8854,
0.5739,
0.2666,
0.6274,
0.2696,
0.4414,
0.2969,
0.8317,
0.1053,
0.2695,
0.3588,
0.1994,
0.5472,
0.0062,
0.9516,
0.0753});
executorch::aten::Tensor value = tfFloat.make(
{1, 1, 4, 4},
{0.8860,
0.5832,
0.3376,
0.8090,
0.5779,
0.9040,
0.5547,
0.3423,
0.6343,
0.3644,
0.7104,
0.9464,
0.7890,
0.2814,
0.7886,
0.5895});
executorch::aten::Tensor attn_mask = tfFloat.make({1, 1}, {0});
executorch::aten::Tensor key_cache_0 = tfFloat.zeros({1, 5, 4, 4});
executorch::aten::Tensor value_cache_0 = tfFloat.zeros({1, 5, 4, 4});
executorch::aten::Tensor key_cache_1 = tfFloat.zeros({1, 5, 4, 4});
executorch::aten::Tensor value_cache_1 = tfFloat.zeros({1, 5, 4, 4});
executorch::aten::Tensor key_cache_2 = tfFloat.zeros({1, 5, 4, 4});
executorch::aten::Tensor value_cache_2 = tfFloat.zeros({1, 5, 4, 4});
double dropout_p = 0;
bool is_causal = false;
executorch::aten::optional<double> scale;

// start pos: 0 layer id 0
executorch::aten::Tensor ret_expected_0 = tfFloat.make(
{1, 1, 4, 4},
{0.8860,
0.5832,
0.3376,
0.8090,
0.5779,
0.9040,
0.5547,
0.3423,
0.6343,
0.3644,
0.7104,
0.9464,
0.7890,
0.2814,
0.7886,
0.5895});

std::vector<int32_t> out_size = {1, 1, 4, 4};
executorch::aten::Tensor out = tfFloat.zeros(out_size);
executorch::aten::Tensor ret = op_sdpa_with_kv_cache(
query,
key,
value,
key_cache_0,
value_cache_0,
0,
1,
attn_mask,
dropout_p,
is_causal,
scale,
out);
EXPECT_TENSOR_CLOSE_WITH_TOL(ret, ret_expected_0, 1e-4, 1e-4);

// start pos: 0 layer id 2
executorch::aten::Tensor ret_expected_1 = tfFloat.make(
{1, 1, 4, 4},
{0.8860,
0.5832,
0.3376,
0.8090,
0.5779,
0.9040,
0.5547,
0.3423,
0.6343,
0.3644,
0.7104,
0.9464,
0.7890,
0.2814,
0.7886,
0.5895});
out = tfFloat.zeros(out_size);
ret = op_sdpa_with_kv_cache(
query,
key,
value,
key_cache_2,
value_cache_2,
0,
1,
attn_mask,
dropout_p,
is_causal,
scale,
out);
EXPECT_TENSOR_CLOSE_WITH_TOL(ret, ret_expected_1, 1e-4, 1e-4);

attn_mask = tfFloat.make({1, 2}, {0, 0});
// start pos: 1 layer id 0
executorch::aten::Tensor ret_expected_2 = tfFloat.make(
{1, 1, 4, 4},
{0.8860,
0.5832,
0.3376,
0.8090,
0.5779,
0.9040,
0.5547,
0.3423,
0.6343,
0.3644,
0.7104,
0.9464,
0.7890,
0.2814,
0.7886,
0.5895});
out = tfFloat.zeros(out_size);
ret = op_sdpa_with_kv_cache(
query,
key,
value,
key_cache_0,
value_cache_0,
1,
1,
attn_mask,
dropout_p,
is_causal,
scale,
out);
EXPECT_TENSOR_CLOSE_WITH_TOL(ret, ret_expected_2, 1e-4, 1e-4);

// start pos: 1 layer id 1
executorch::aten::Tensor ret_expected_3 = tfFloat.make(
{1, 1, 4, 4},
{0.6486,
0.4270,
0.2472,
0.5922,
0.3669,
0.5740,
0.3522,
0.2173,
0.3635,
0.2088,
0.4071,
0.5423,
0.5110,
0.1822,
0.5107,
0.3817});
out = tfFloat.zeros(out_size);
ret = op_sdpa_with_kv_cache(
query,
key,
value,
key_cache_1,
value_cache_1,
1,
1,
attn_mask,
dropout_p,
is_causal,
scale,
out);
EXPECT_TENSOR_CLOSE_WITH_TOL(ret, ret_expected_3, 1e-4, 1e-4);

attn_mask = tfFloat.make({1, 3}, {0, 0, 0});
// start pos: 2 layer id 1
executorch::aten::Tensor ret_expected_4 = tfFloat.make(
{1, 1, 4, 4},
{0.7490,
0.4930,
0.2854,
0.6838,
0.4489,
0.7021,
0.4308,
0.2659,
0.4622,
0.2655,
0.5176,
0.6895,
0.6202,
0.2212,
0.6199,
0.4634});
out = tfFloat.zeros(out_size);
ret = op_sdpa_with_kv_cache(
query,
key,
value,
key_cache_1,
value_cache_1,
2,
1,
attn_mask,
dropout_p,
is_causal,
scale,
out);
EXPECT_TENSOR_CLOSE_WITH_TOL(ret, ret_expected_4, 1e-4, 1e-4);

// start pos: 2 layer id 2
executorch::aten::Tensor ret_expected_5 = tfFloat.make(
{1, 1, 4, 4},
{0.7490,
0.4930,
0.2854,
0.6838,
0.4489,
0.7021,
0.4308,
0.2659,
0.4622,
0.2655,
0.5176,
0.6895,
0.6202,
0.2212,
0.6199,
0.4634});
out = tfFloat.zeros(out_size);
ret = op_sdpa_with_kv_cache(
query,
key,
value,
key_cache_2,
value_cache_2,
2,
1,
attn_mask,
dropout_p,
is_causal,
scale,
out);
EXPECT_TENSOR_CLOSE_WITH_TOL(ret, ret_expected_5, 1e-4, 1e-4);
}

TEST(OpScaledDotProductAttentionTest, SequenceTest) {
TensorFactory<executorch::aten::ScalarType::Float> tfFloat;

Expand Down
24 changes: 16 additions & 8 deletions extension/llm/custom_ops/test_sdpa_with_kv_cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,12 +67,14 @@ def test_sdpa_with_cache_no_mqa_1(self):
)
if self.use_mask_with_custom_op:
attn_mask = attn_mask.contiguous()
sliced_k_cache = self.k_cache[:, : start_pos + seq_len, :, :]
sliced_v_cache = self.v_cache[:, : start_pos + seq_len, :, :]
op_output = torch.ops.llama.sdpa_with_kv_cache(
q,
k,
v,
self.k_cache,
self.v_cache,
sliced_k_cache,
sliced_v_cache,
start_pos,
seq_len,
attn_mask,
Expand Down Expand Up @@ -108,12 +110,14 @@ def test_sdpa_with_cache_no_mqa_2(self):
)
if self.use_mask_with_custom_op:
attn_mask = attn_mask.contiguous()
sliced_k_cache = self.k_cache[:, : start_pos + seq_len, :, :]
sliced_v_cache = self.v_cache[:, : start_pos + seq_len, :, :]
op_output = torch.ops.llama.sdpa_with_kv_cache(
q,
k,
v,
self.k_cache,
self.v_cache,
sliced_k_cache,
sliced_v_cache,
start_pos,
seq_len,
attn_mask,
Expand Down Expand Up @@ -150,12 +154,14 @@ def test_sdpa_with_cache_no_mqa_3(self):
)
if self.use_mask_with_custom_op:
attn_mask = attn_mask.contiguous()
sliced_k_cache = self.k_cache[:, : start_pos + seq_len, :, :]
sliced_v_cache = self.v_cache[:, : start_pos + seq_len, :, :]
op_output = torch.ops.llama.sdpa_with_kv_cache(
q,
k,
v,
self.k_cache,
self.v_cache,
sliced_k_cache,
sliced_v_cache,
start_pos,
seq_len,
attn_mask,
Expand Down Expand Up @@ -191,12 +197,14 @@ def test_sdpa_with_cache_no_mqa_4(self):
)
if self.use_mask_with_custom_op:
attn_mask = attn_mask.contiguous()
sliced_k_cache = self.k_cache[:, : start_pos + seq_len, :, :]
sliced_v_cache = self.v_cache[:, : start_pos + seq_len, :, :]
op_output = torch.ops.llama.sdpa_with_kv_cache(
q,
k,
v,
self.k_cache,
self.v_cache,
sliced_k_cache,
sliced_v_cache,
start_pos,
seq_len,
attn_mask,
Expand Down
Loading