-
Notifications
You must be signed in to change notification settings - Fork 536
4b embedding quantizer #3081
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
4b embedding quantizer #3081
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -122,6 +122,10 @@ def dynamically_quantize_per_channel( | |
return quant, scales, zero_points | ||
|
||
|
||
######################################################################### | ||
### QuantHandler API definition ### | ||
|
||
|
||
class QuantHandler: | ||
def __init__(self, mod): | ||
self.mod = mod | ||
|
@@ -132,8 +136,15 @@ def create_quantized_state_dict(self) -> Dict: # "StateDict" | |
def convert_for_runtime(self) -> nn.Module: | ||
pass | ||
|
||
def quantized_model(self) -> nn.Module: | ||
model_updated_state_dict = self.create_quantized_state_dict() | ||
self.convert_for_runtime() | ||
self.mod.load_state_dict(model_updated_state_dict) | ||
return self.mod | ||
|
||
##### Weight-only int8 per-channel quantized code ###### | ||
|
||
######################################################################### | ||
### Weight-only int8 per-channel quantized code ### | ||
|
||
|
||
def replace_linear_weight_only_int8_per_channel(module, node_type): | ||
|
@@ -151,16 +162,17 @@ def replace_linear_weight_only_int8_per_channel(module, node_type): | |
setattr( | ||
module, | ||
name, | ||
WeightOnlyInt8Linear(child.in_features, child.out_features), | ||
WeightOnlyInt8Linear("cpu", child.in_features, child.out_features), | ||
) | ||
else: | ||
replace_linear_weight_only_int8_per_channel(child, node_type) | ||
|
||
|
||
class WeightOnlyInt8QuantHandler: | ||
class WeightOnlyInt8QuantHandler(QuantHandler): | ||
def __init__( | ||
self, | ||
mod, | ||
device="cpu", | ||
*, | ||
node_type: str = "*", | ||
bitwidth: Optional[int] = None, | ||
|
@@ -200,7 +212,7 @@ def create_quantized_state_dict(self) -> Dict: | |
) | ||
): | ||
print( | ||
f"quantize {self.node_type} {fqn, mod} with groupsize {self.group_size}, bitwidth {self.bitwidth}" | ||
f"quantize {self.node_type} {fqn, mod} with group_size {self.group_size}, bitwidth {self.bitwidth}" | ||
) | ||
|
||
# print(f"initial weight shape {mod.weight.shape}") | ||
|
@@ -217,7 +229,7 @@ def create_quantized_state_dict(self) -> Dict: | |
) | ||
|
||
cur_state_dict[f"{fqn}.weight"] = weight | ||
# squeeze makes groupsize=rowsize unidimensional | ||
# squeeze makes group_size=rowsize unidimensional | ||
cur_state_dict[f"{fqn}.scales"] = scales.squeeze(dim=-1) | ||
|
||
return cur_state_dict | ||
|
@@ -241,10 +253,10 @@ class WeightOnlyInt8Linear(torch.nn.Module): | |
|
||
def __init__( | ||
self, | ||
device, | ||
in_features: int, | ||
out_features: int, | ||
bias: bool = True, | ||
device=None, | ||
dtype=None, | ||
) -> None: | ||
super().__init__() | ||
|
@@ -260,11 +272,12 @@ def forward(self, input: torch.Tensor) -> torch.Tensor: | |
# return F.linear(input, self.weight.to(dtype=input.dtype)) * se... | ||
|
||
|
||
##### embedding table quantization ###### | ||
######################################################################### | ||
##### embedding table quantization ###### | ||
|
||
|
||
def replace_embedding_weight_only_grouped_int8_per_channel( | ||
module, bitwidth: int = 8, group_size: Optional[int] = None | ||
module, device, bitwidth: int = 8, group_size: Optional[int] = None, packed=False | ||
): | ||
for name, child in module.named_children(): | ||
# print(f"name: {name}") | ||
|
@@ -275,25 +288,41 @@ def replace_embedding_weight_only_grouped_int8_per_channel( | |
module, | ||
name, | ||
QuantizedGroupEmbedding( | ||
device=device, | ||
vocab_size=child.weight.shape[0], | ||
embedding_dim=child.weight.shape[1], | ||
group_size=group_size, | ||
packed=packed, | ||
), | ||
) | ||
else: | ||
replace_embedding_weight_only_grouped_int8_per_channel( | ||
child, bitwidth, group_size | ||
child, device, bitwidth, group_size, packed | ||
) | ||
|
||
|
||
class EmbeddingOnlyInt8QuantHandler: | ||
def __init__(self, mod, *, bitwidth: int = 8, group_size: Optional[int] = None): | ||
class EmbeddingOnlyInt8QuantHandler(QuantHandler): | ||
def __init__( | ||
self, | ||
mod, | ||
device="cpu", | ||
*, | ||
bitwidth: int = 8, | ||
group_size: Optional[int] = None, | ||
packed=False, | ||
): | ||
if isinstance(packed, str): | ||
packed = packed == "True" | ||
self.mod = mod | ||
self.device = device | ||
self.group_size = group_size | ||
self.bitwidth = bitwidth | ||
self.packed = packed | ||
if (bitwidth != 4) and packed: | ||
raise RuntimeError("pack only works with bitsize 4") | ||
|
||
@torch.no_grad() | ||
def create_quantized_state_dict(self) -> Dict: | ||
def create_quantized_state_dict(self, packed=False) -> Dict: | ||
cur_state_dict = self.mod.state_dict() | ||
|
||
if self.bitwidth == 4: | ||
|
@@ -306,18 +335,14 @@ def create_quantized_state_dict(self) -> Dict: | |
raise ValueError(f"Unsupported bitwidth {self.bitwidth}") | ||
|
||
for fqn, mod in self.mod.named_modules(): | ||
if ( | ||
isinstance(mod, nn.Embedding) | ||
or isinstance(mod, fsEmbedding) | ||
or isinstance(mod, fsStandardEmbedding) | ||
): | ||
if isinstance(mod, nn.Embedding): | ||
# print("****") | ||
# print(f"Embedding identified: {fqn, mod}") | ||
# print(f"weights size: {mod.weight.size()}") | ||
# print(f"quantize {fqn}...") | ||
|
||
print( | ||
f"quantize {fqn, mod} with groupsize {self.group_size}, bitwidth {self.bitwidth}" | ||
f"quantize {fqn, mod} with group_size {self.group_size}, bitwidth {self.bitwidth}" | ||
) | ||
weight, scales, _ = dynamically_quantize_per_channel( | ||
mod.weight.float(), | ||
|
@@ -328,21 +353,36 @@ def create_quantized_state_dict(self) -> Dict: | |
scales_dtype=mod.weight.dtype, | ||
) | ||
|
||
if packed: | ||
if weight.shape[-1] % 2 != 0: | ||
raise RuntimeError("automatic padding not implemented yet") | ||
|
||
weight_range_shifted = weight.add(8).view(torch.uint8) | ||
weight_view = weight_range_shifted.view( | ||
weight.shape[0], weight.shape[1] // 2, 2 | ||
) | ||
weight_even = weight_view[:, :, 0] * 16 # left shift 4 | ||
weight_odd = weight_view[:, :, 1] | ||
weight_packed = weight_even + weight_odd | ||
weight = weight_packed | ||
|
||
weight = weight.to(device=self.device) | ||
scales = scales.to(device=self.device) | ||
# Update state dict | ||
cur_state_dict[f"{fqn}.weight"] = weight | ||
# squeeze makes groupsize=rowsize unidimensional | ||
# squeeze makes group_size=rowsize unidimensional | ||
cur_state_dict[f"{fqn}.scales"] = scales.squeeze(dim=-1) | ||
|
||
return cur_state_dict | ||
|
||
def convert_for_runtime(self) -> nn.Module: | ||
replace_embedding_weight_only_grouped_int8_per_channel( | ||
self.mod, self.bitwidth, self.group_size | ||
self.mod, self.device, self.bitwidth, self.group_size, self.packed | ||
) | ||
return self.mod | ||
|
||
def quantized_model(self) -> nn.Module: | ||
model_updated_state_dict = self.create_quantized_state_dict() | ||
model_updated_state_dict = self.create_quantized_state_dict(self.packed) | ||
self.convert_for_runtime() | ||
self.mod.load_state_dict(model_updated_state_dict) | ||
return self.mod | ||
|
@@ -351,39 +391,53 @@ def quantized_model(self) -> nn.Module: | |
class QuantizedGroupEmbedding(torch.nn.Module): | ||
def __init__( | ||
self, | ||
device, | ||
vocab_size: int, | ||
embedding_dim: int, | ||
group_size: Optional[int] = None, | ||
device=None, | ||
dtype=torch.half, | ||
packed=False, | ||
) -> None: | ||
super().__init__() | ||
if group_size is None: | ||
if group_size is None or group_size == 0: | ||
group_size = embedding_dim | ||
self.group_size = group_size | ||
self.dtype = dtype | ||
self.register_buffer( | ||
"weight", torch.empty((vocab_size, embedding_dim), dtype=torch.int8) | ||
) | ||
self.packed = packed | ||
if not packed: | ||
self.register_buffer( | ||
"weight", | ||
torch.empty( | ||
(vocab_size, embedding_dim), dtype=torch.int8, device=device | ||
), | ||
) | ||
else: # packed | ||
self.register_buffer( | ||
"weight", | ||
torch.empty( | ||
(vocab_size, embedding_dim // 2), dtype=torch.uint8, device=device | ||
), | ||
) | ||
groups_per_row = (embedding_dim + group_size - 1) // group_size | ||
if groups_per_row > 1: | ||
self.register_buffer( | ||
"scales", torch.ones((vocab_size, groups_per_row), dtype=torch.float16) | ||
"scales", | ||
torch.ones( | ||
(vocab_size, groups_per_row), dtype=torch.float16, device=device | ||
), | ||
) | ||
else: | ||
self.register_buffer( | ||
"scales", torch.ones((vocab_size,), dtype=torch.float16) | ||
"scales", torch.ones((vocab_size,), dtype=torch.float16, device=device) | ||
) | ||
|
||
@torch.no_grad() | ||
def forward(self, indices: torch.Tensor) -> torch.Tensor: | ||
return torch.ops.llama_quantized.DEPRECATED_DO_NOT_USE_embedding_byte.dtype( | ||
self.weight, self.scales, None, 0, 0, indices, dtype=self.dtype | ||
) | ||
|
||
|
||
# result_weights = self.weight.index_select(0, indices.view(-1)) | ||
# result_scales = self.scales.index_select(0, indices.view(-1)) | ||
# | ||
# r = result_weights.to(dtype=result_scales.dtype) * result_scales | ||
# return r.view(indices.size() + (-1,)) | ||
if not self.packed: # 8bit | ||
return torch.ops.llama_quantized.DEPRECATED_DO_NOT_USE_embedding_byte.dtype( | ||
self.weight, self.scales, None, 0, 0, indices, dtype=self.dtype | ||
) | ||
else: # 4bit packed | ||
return torch.ops.llama_quantized.embedding_4bit.dtype( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It seems here it should be |
||
self.weight, self.scales, None, 0, 0, indices, dtype=self.dtype | ||
) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should we rename this class? Since it's not int8 only anymore.