Skip to content

4b embedding quantizer #3081

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 92 additions & 38 deletions examples/models/llama2/quantize.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,10 @@ def dynamically_quantize_per_channel(
return quant, scales, zero_points


#########################################################################
### QuantHandler API definition ###


class QuantHandler:
def __init__(self, mod):
self.mod = mod
Expand All @@ -132,8 +136,15 @@ def create_quantized_state_dict(self) -> Dict: # "StateDict"
def convert_for_runtime(self) -> nn.Module:
pass

def quantized_model(self) -> nn.Module:
model_updated_state_dict = self.create_quantized_state_dict()
self.convert_for_runtime()
self.mod.load_state_dict(model_updated_state_dict)
return self.mod

##### Weight-only int8 per-channel quantized code ######

#########################################################################
### Weight-only int8 per-channel quantized code ###


def replace_linear_weight_only_int8_per_channel(module, node_type):
Expand All @@ -151,16 +162,17 @@ def replace_linear_weight_only_int8_per_channel(module, node_type):
setattr(
module,
name,
WeightOnlyInt8Linear(child.in_features, child.out_features),
WeightOnlyInt8Linear("cpu", child.in_features, child.out_features),
)
else:
replace_linear_weight_only_int8_per_channel(child, node_type)


class WeightOnlyInt8QuantHandler:
class WeightOnlyInt8QuantHandler(QuantHandler):
def __init__(
self,
mod,
device="cpu",
*,
node_type: str = "*",
bitwidth: Optional[int] = None,
Expand Down Expand Up @@ -200,7 +212,7 @@ def create_quantized_state_dict(self) -> Dict:
)
):
print(
f"quantize {self.node_type} {fqn, mod} with groupsize {self.group_size}, bitwidth {self.bitwidth}"
f"quantize {self.node_type} {fqn, mod} with group_size {self.group_size}, bitwidth {self.bitwidth}"
)

# print(f"initial weight shape {mod.weight.shape}")
Expand All @@ -217,7 +229,7 @@ def create_quantized_state_dict(self) -> Dict:
)

cur_state_dict[f"{fqn}.weight"] = weight
# squeeze makes groupsize=rowsize unidimensional
# squeeze makes group_size=rowsize unidimensional
cur_state_dict[f"{fqn}.scales"] = scales.squeeze(dim=-1)

return cur_state_dict
Expand All @@ -241,10 +253,10 @@ class WeightOnlyInt8Linear(torch.nn.Module):

def __init__(
self,
device,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
Expand All @@ -260,11 +272,12 @@ def forward(self, input: torch.Tensor) -> torch.Tensor:
# return F.linear(input, self.weight.to(dtype=input.dtype)) * se...


##### embedding table quantization ######
#########################################################################
##### embedding table quantization ######


def replace_embedding_weight_only_grouped_int8_per_channel(
module, bitwidth: int = 8, group_size: Optional[int] = None
module, device, bitwidth: int = 8, group_size: Optional[int] = None, packed=False
):
for name, child in module.named_children():
# print(f"name: {name}")
Expand All @@ -275,25 +288,41 @@ def replace_embedding_weight_only_grouped_int8_per_channel(
module,
name,
QuantizedGroupEmbedding(
device=device,
vocab_size=child.weight.shape[0],
embedding_dim=child.weight.shape[1],
group_size=group_size,
packed=packed,
),
)
else:
replace_embedding_weight_only_grouped_int8_per_channel(
child, bitwidth, group_size
child, device, bitwidth, group_size, packed
)


class EmbeddingOnlyInt8QuantHandler:
def __init__(self, mod, *, bitwidth: int = 8, group_size: Optional[int] = None):
class EmbeddingOnlyInt8QuantHandler(QuantHandler):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should we rename this class? Since it's not int8 only anymore.

def __init__(
self,
mod,
device="cpu",
*,
bitwidth: int = 8,
group_size: Optional[int] = None,
packed=False,
):
if isinstance(packed, str):
packed = packed == "True"
self.mod = mod
self.device = device
self.group_size = group_size
self.bitwidth = bitwidth
self.packed = packed
if (bitwidth != 4) and packed:
raise RuntimeError("pack only works with bitsize 4")

@torch.no_grad()
def create_quantized_state_dict(self) -> Dict:
def create_quantized_state_dict(self, packed=False) -> Dict:
cur_state_dict = self.mod.state_dict()

if self.bitwidth == 4:
Expand All @@ -306,18 +335,14 @@ def create_quantized_state_dict(self) -> Dict:
raise ValueError(f"Unsupported bitwidth {self.bitwidth}")

for fqn, mod in self.mod.named_modules():
if (
isinstance(mod, nn.Embedding)
or isinstance(mod, fsEmbedding)
or isinstance(mod, fsStandardEmbedding)
):
if isinstance(mod, nn.Embedding):
# print("****")
# print(f"Embedding identified: {fqn, mod}")
# print(f"weights size: {mod.weight.size()}")
# print(f"quantize {fqn}...")

print(
f"quantize {fqn, mod} with groupsize {self.group_size}, bitwidth {self.bitwidth}"
f"quantize {fqn, mod} with group_size {self.group_size}, bitwidth {self.bitwidth}"
)
weight, scales, _ = dynamically_quantize_per_channel(
mod.weight.float(),
Expand All @@ -328,21 +353,36 @@ def create_quantized_state_dict(self) -> Dict:
scales_dtype=mod.weight.dtype,
)

if packed:
if weight.shape[-1] % 2 != 0:
raise RuntimeError("automatic padding not implemented yet")

weight_range_shifted = weight.add(8).view(torch.uint8)
weight_view = weight_range_shifted.view(
weight.shape[0], weight.shape[1] // 2, 2
)
weight_even = weight_view[:, :, 0] * 16 # left shift 4
weight_odd = weight_view[:, :, 1]
weight_packed = weight_even + weight_odd
weight = weight_packed

weight = weight.to(device=self.device)
scales = scales.to(device=self.device)
# Update state dict
cur_state_dict[f"{fqn}.weight"] = weight
# squeeze makes groupsize=rowsize unidimensional
# squeeze makes group_size=rowsize unidimensional
cur_state_dict[f"{fqn}.scales"] = scales.squeeze(dim=-1)

return cur_state_dict

def convert_for_runtime(self) -> nn.Module:
replace_embedding_weight_only_grouped_int8_per_channel(
self.mod, self.bitwidth, self.group_size
self.mod, self.device, self.bitwidth, self.group_size, self.packed
)
return self.mod

def quantized_model(self) -> nn.Module:
model_updated_state_dict = self.create_quantized_state_dict()
model_updated_state_dict = self.create_quantized_state_dict(self.packed)
self.convert_for_runtime()
self.mod.load_state_dict(model_updated_state_dict)
return self.mod
Expand All @@ -351,39 +391,53 @@ def quantized_model(self) -> nn.Module:
class QuantizedGroupEmbedding(torch.nn.Module):
def __init__(
self,
device,
vocab_size: int,
embedding_dim: int,
group_size: Optional[int] = None,
device=None,
dtype=torch.half,
packed=False,
) -> None:
super().__init__()
if group_size is None:
if group_size is None or group_size == 0:
group_size = embedding_dim
self.group_size = group_size
self.dtype = dtype
self.register_buffer(
"weight", torch.empty((vocab_size, embedding_dim), dtype=torch.int8)
)
self.packed = packed
if not packed:
self.register_buffer(
"weight",
torch.empty(
(vocab_size, embedding_dim), dtype=torch.int8, device=device
),
)
else: # packed
self.register_buffer(
"weight",
torch.empty(
(vocab_size, embedding_dim // 2), dtype=torch.uint8, device=device
),
)
groups_per_row = (embedding_dim + group_size - 1) // group_size
if groups_per_row > 1:
self.register_buffer(
"scales", torch.ones((vocab_size, groups_per_row), dtype=torch.float16)
"scales",
torch.ones(
(vocab_size, groups_per_row), dtype=torch.float16, device=device
),
)
else:
self.register_buffer(
"scales", torch.ones((vocab_size,), dtype=torch.float16)
"scales", torch.ones((vocab_size,), dtype=torch.float16, device=device)
)

@torch.no_grad()
def forward(self, indices: torch.Tensor) -> torch.Tensor:
return torch.ops.llama_quantized.DEPRECATED_DO_NOT_USE_embedding_byte.dtype(
self.weight, self.scales, None, 0, 0, indices, dtype=self.dtype
)


# result_weights = self.weight.index_select(0, indices.view(-1))
# result_scales = self.scales.index_select(0, indices.view(-1))
#
# r = result_weights.to(dtype=result_scales.dtype) * result_scales
# return r.view(indices.size() + (-1,))
if not self.packed: # 8bit
return torch.ops.llama_quantized.DEPRECATED_DO_NOT_USE_embedding_byte.dtype(
self.weight, self.scales, None, 0, 0, indices, dtype=self.dtype
)
else: # 4bit packed
return torch.ops.llama_quantized.embedding_4bit.dtype(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It seems here it should be quantized_decomposed::embedding_4bit

self.weight, self.scales, None, 0, 0, indices, dtype=self.dtype
)
Loading