Skip to content

qnn end to end flow for stories model (#3038) #3182

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions backends/qualcomm/builders/node_visitor.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
QNN_uint16: PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UFIXED_POINT_16,
}
QNN_TENSOR_TYPE_MAP = {
torch.bool: PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_BOOL_8,
torch.float32: PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_FLOAT_32,
torch.int8: PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_INT_8,
torch.int16: PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_INT_16,
Expand Down
2 changes: 2 additions & 0 deletions backends/qualcomm/partition/common_defs.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@
exir_ops.edge.aten.clone.default,
exir_ops.edge.aten.index.Tensor,
exir_ops.edge.aten.full.default,
exir_ops.edge.aten.slice_scatter.default,
exir_ops.edge.aten.index_put.default,
]

allow_list_operator = [
Expand Down
77 changes: 67 additions & 10 deletions examples/models/llama2/export_llama_lib.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,6 +355,13 @@ def build_args_parser() -> argparse.ArgumentParser:
parser.add_argument(
"--pt2e_quantize",
default=None,
choices=[
"xnnpack_dynamic",
"xnnpack_dynamic_qc4",
"qnn_8a8w",
"qnn_16a16w",
"qnn_16a4w",
],
help="Use PT2E quantization. Comma separated options. e.g. xnnpack_dynamic (for per channel 8 bit weight), xnnpack_dynamic_qc4 (for per channel 4 bit weight), embedding.",
)
parser.add_argument(
Expand Down Expand Up @@ -615,6 +622,9 @@ def _prepare_for_llama_export(modelname: str, args) -> LlamaEdgeManager:
if args.use_sdpa_with_kv_cache:
transforms.append(replace_sdpa_with_custom_op)

if args.qnn and args.use_kv_cache:
transforms.append(replace_sdpa_with_simple_sdpa)
transforms.append(replace_causal_mask)
return (
load_llama_model(
checkpoint=checkpoint_path,
Expand All @@ -636,13 +646,16 @@ def _export_llama(modelname, args) -> str: # noqa: C901
# export_to_edge
pt2e_quant_params = _get_pt2e_quantization_params(args)
quantizers = get_pt2e_quantizers(pt2e_quant_params, args)
if args.qnn:
assert (
args.quantization_mode is None
), "Currently qnn backend only supports QnnQuantizer via pt2e flow"
quant_dtype = None
if args.qnn and args.pt2e_quantize:
try:
# pyre-ignore: Undefined import [21]: Could not find a module corresponding to import `executorch.backends.qualcomm.quantizer.quantizer`
from executorch.backends.qualcomm.quantizer.quantizer import QnnQuantizer
from executorch.backends.qualcomm.quantizer.quantizer import (
get_16a4w_qnn_ptq_config,
get_default_16bit_qnn_ptq_config,
QnnQuantizer,
QuantDtype,
)

# reset quantizers and pt2e_quant_params from xnnpack backend
pt2e_quant_params = None
Expand All @@ -652,10 +665,41 @@ def _export_llama(modelname, args) -> str: # noqa: C901
"Please install the Qualcomm backend follwing https://pytorch.org/executorch/main/build-run-qualcomm.html"
)

backend, quant_config = args.pt2e_quantize.split("_")
assert (
backend == "qnn"
), f"The quantization config is for backend {backend} instead of qnn."
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
qnn_quantizer = QnnQuantizer()
# more custom quantization are supported including 16a4w etc. default to 8bit quantized
custom_annotations = ()
if quant_config == "8a8w":
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
quant_dtype = QuantDtype.use_8a8w
pass
elif quant_config == "16a16w":
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
quant_dtype = QuantDtype.use_16a16w
qnn_quantizer.add_16bit_quant_ops(qnn_quantizer.SUPPORTED_OPS)
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
qnn_quantizer.set_bit16_op_quant_config(get_default_16bit_qnn_ptq_config())
elif quant_config == "16a4w":
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
quant_dtype = QuantDtype.use_16a4w
qnn_quantizer.add_16bit_quant_ops(qnn_quantizer.SUPPORTED_OPS)
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
qnn_quantizer.set_bit16_op_quant_config(get_16a4w_qnn_ptq_config())
qnn_quantizer.set_per_channel_weight_dtype(
weight_dtype_for_16bit_act="int4"
)
else:
raise AssertionError(
f"No support for quant type {quant_config}. Support 8a8w, 16a16w and 16a4w."
)

assert (
args.quantization_mode is None
), "Currently qnn backend only supports QnnQuantizer via pt2e flow"
qnn_quantizer.add_custom_quant_annotations(custom_annotations)
quantizers.append(qnn_quantizer)

Expand Down Expand Up @@ -769,25 +813,38 @@ def _export_llama(modelname, args) -> str: # noqa: C901
"Please install the Qualcomm backend follwing https://pytorch.org/executorch/main/build-run-qualcomm.html"
)

# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`
backend_options = generate_htp_compiler_spec(use_fp16=False)
use_fp16 = True
skip_node_op_set = {}
if args.pt2e_quantize:
use_fp16 = False
# TODO: fix the lowering error without skipping nodes
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
if quant_dtype == QuantDtype.use_8a8w:
raise NotImplementedError("8a8w for llama is still under development")
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
elif quant_dtype == QuantDtype.use_16a16w:
raise NotImplementedError("16a16w for llama is still under development")
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
elif quant_dtype == QuantDtype.use_16a4w:
raise NotImplementedError("16a4w for llama is still under development")
partitioners.append(
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`
QnnPartitioner(
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`
generate_qnn_executorch_compiler_spec(
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
soc_model=QcomChipset.SM8650, # default to SM8650
backend_options=backend_options,
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`.
backend_options=generate_htp_compiler_spec(use_fp16=use_fp16),
debug=False,
saver=False,
),
skip_node_id_set={},
skip_node_op_set={},
skip_node_op_set=skip_node_op_set,
)
)
# pyre-ignore: Undefined attribute [16]: Module `executorch.backends` has no attribute `qualcomm`
_transform(builder_exported_to_edge.export_program())
_transform(builder_exported_to_edge.edge_manager.exported_program())

if args.generate_etrecord:
if not builder_exported_to_edge.edge_manager:
Expand Down
Loading