Skip to content

Remove redundant pt2_mode=True #54

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions backends/qnnpack/partition/support_patterns.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,9 +48,9 @@ def get_dynamic_quantized_graph(f, example_inputs, dynamic_shape=False):
# Convert module
converted_mod = _convert_to_reference_decomposed_fx(prepared_mod)
if dynamic_shape:
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=True)
capture_config = CaptureConfig(enable_dynamic_shape=True)
else:
capture_config = CaptureConfig(pt2_mode=True)
capture_config = CaptureConfig()
# EXIR trace
gm = (
exir.capture(converted_mod, example_inputs, capture_config)
Expand Down
26 changes: 10 additions & 16 deletions backends/qnnpack/test/test_qnnpack.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def test_qnnpack_per_channel_dynamic_mm(self):
)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=False)
capture_config = CaptureConfig(enable_dynamic_shape=False)
captured_mod = exir.capture(
converted_mod, example_inputs, config=capture_config
).to_edge(EDGE_COMPILE_CONFIG)
Expand Down Expand Up @@ -115,9 +115,7 @@ def forward(self, x):

composite_model(*example_inputs)
program = (
exir.capture(
composite_model, example_inputs, exir.CaptureConfig(pt2_mode=True)
)
exir.capture(composite_model, example_inputs, exir.CaptureConfig())
.to_edge(EDGE_COMPILE_CONFIG)
.to_executorch(config=EXECUTORCH_BACKEND_CONFIG)
.program
Expand Down Expand Up @@ -159,7 +157,7 @@ def test_qnnpack_per_channel_dynamic_qlinear(self):
)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=False)
capture_config = CaptureConfig(enable_dynamic_shape=False)
captured_mod = exir.capture(
converted_mod, example_inputs, config=capture_config
).to_edge(EDGE_COMPILE_CONFIG)
Expand Down Expand Up @@ -202,9 +200,7 @@ def forward(self, x):

composite_model(*example_inputs)
program = (
exir.capture(
composite_model, example_inputs, exir.CaptureConfig(pt2_mode=True)
)
exir.capture(composite_model, example_inputs, exir.CaptureConfig())
.to_edge(EDGE_COMPILE_CONFIG)
.to_executorch(config=EXECUTORCH_BACKEND_CONFIG)
.program
Expand Down Expand Up @@ -246,7 +242,7 @@ def test_qnnpack_per_tensor_dynamic_mm(self):
)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=False)
capture_config = CaptureConfig(enable_dynamic_shape=False)
captured_mod = exir.capture(
converted_mod, example_inputs, config=capture_config
).to_edge(EDGE_COMPILE_CONFIG)
Expand Down Expand Up @@ -321,7 +317,7 @@ def test_qnnpack_per_tensor_dynamic_qlinear(self):
)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=False)
capture_config = CaptureConfig(enable_dynamic_shape=False)
captured_mod = exir.capture(
converted_mod, example_inputs, config=capture_config
).to_edge(EDGE_COMPILE_CONFIG)
Expand Down Expand Up @@ -406,7 +402,7 @@ def test_qnnpack_per_channel_dynamic_mm_with_dynamic_shape(self):
)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=True)
capture_config = CaptureConfig(enable_dynamic_shape=True)
captured_mod = exir.capture(
converted_mod, example_inputs, config=capture_config
).to_edge(EDGE_COMPILE_CONFIG)
Expand Down Expand Up @@ -438,9 +434,7 @@ def forward(self, x):

composite_model(*example_inputs)
program = (
exir.capture(
composite_model, example_inputs, exir.CaptureConfig(pt2_mode=True)
)
exir.capture(composite_model, example_inputs, exir.CaptureConfig())
.to_edge(EDGE_COMPILE_CONFIG)
.to_executorch(config=EXECUTORCH_BACKEND_CONFIG)
.program
Expand Down Expand Up @@ -483,7 +477,7 @@ def test_qnnpack_per_channel_dynamic_qlinear_via_partitioner(self):
)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=False)
capture_config = CaptureConfig(enable_dynamic_shape=False)
captured_mod = exir.capture(
converted_mod, example_inputs, config=capture_config
).to_edge(EDGE_COMPILE_CONFIG)
Expand Down Expand Up @@ -538,7 +532,7 @@ def test_qnnpack_per_channel_dynamic_qlinear_via_partitioner(self):
# composite_model(*example_inputs)
# program = (
# exir.capture(
# composite_model, example_inputs, exir.CaptureConfig(pt2_mode=True)
# composite_model, example_inputs, exir.CaptureConfig()
# )
# .to_edge(EDGE_COMPILE_CONFIG)
# .to_executorch()
Expand Down
2 changes: 1 addition & 1 deletion backends/qnnpack/test/test_qnnpack_partitioner.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def get_actual_dyanmic_quantized_graph(
converted_mod = _convert_to_reference_decomposed_fx(prepared_mod)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=dynamic_shape)
capture_config = CaptureConfig(enable_dynamic_shape=dynamic_shape)
dynamic_quantized_exir_graph = (
exir.capture(converted_mod, example_inputs, config=capture_config)
.to_edge(exir.EdgeCompileConfig(_check_ir_validity=False))
Expand Down
8 changes: 2 additions & 6 deletions backends/vulkan/test/test_vulkan_delegate.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,9 +61,7 @@ def lower_module_and_test_output(
the given sample inputs. It then runs the lowered module and compares its
outputs with the outputs of the eager module.
"""
edgeir_m = exir.capture(
module, sample_inputs, exir.CaptureConfig(pt2_mode=True)
).to_edge()
edgeir_m = exir.capture(module, sample_inputs, exir.CaptureConfig()).to_edge()
lowered_module = to_backend("VulkanBackend", edgeir_m.exported_program, [])

class WrappedModule(torch.nn.Module):
Expand All @@ -75,9 +73,7 @@ def forward(self, *args):
return self.one_module(*args)

program = (
exir.capture(
WrappedModule(), sample_inputs, exir.CaptureConfig(pt2_mode=True)
)
exir.capture(WrappedModule(), sample_inputs, exir.CaptureConfig())
.to_edge()
.to_executorch()
.program
Expand Down
4 changes: 2 additions & 2 deletions backends/xnnpack/partition/support_patterns.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@
exir.capture(
add,
model_inputs,
config=CaptureConfig(pt2_mode=True, enable_dynamic_shape=True),
config=CaptureConfig(enable_dynamic_shape=True),
)
.to_edge().module
.graph
Expand All @@ -68,7 +68,7 @@


def _capture(module, example_inputs, pt_mode=True) -> torch.fx.GraphModule:
capture_config = CaptureConfig(pt2_mode=pt_mode, enable_dynamic_shape=False)
capture_config = CaptureConfig(enable_dynamic_shape=False)
edge_config = exir.EdgeCompileConfig(
_check_ir_validity=False,
passes=[DuplicateDequantNodePass()],
Expand Down
4 changes: 2 additions & 2 deletions backends/xnnpack/test/test_xnnpack.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ def test_xnnpack_backend_conv2d_dw(self):
conv.eval()
self.lower_and_test_with_partitioner(conv, example_inputs)

@torch.inference_mode() # TODO Use pt2_mode=True for capturing.
@torch.inference_mode() # TODO Use for capturing.
def test_xnnpack_backend_mm(self):
in_sizes = [1, 4, 4]
input_sizes = [4, 37, 17]
Expand Down Expand Up @@ -329,7 +329,7 @@ def forward(self, x, y):
)
self.lower_and_test_with_partitioner(module, model_inputs)

@torch.inference_mode() # TODO Use pt2_mode=True for capturing.
@torch.inference_mode() # TODO Use for capturing.
def test_xnnpack_backend_linear(self):
in_size = 2
input_size = 3
Expand Down
6 changes: 2 additions & 4 deletions backends/xnnpack/utils/configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,6 @@ def get_xnnpack_executorch_backend_config(

def get_xnnpack_capture_config(dynamic_shape=False, enable_aot: Optional[bool] = None):
if enable_aot is None:
return CaptureConfig(pt2_mode=True, enable_dynamic_shape=dynamic_shape)
return CaptureConfig(enable_dynamic_shape=dynamic_shape)
else:
return CaptureConfig(
pt2_mode=True, enable_dynamic_shape=dynamic_shape, enable_aot=enable_aot
)
return CaptureConfig(enable_dynamic_shape=dynamic_shape, enable_aot=enable_aot)
2 changes: 1 addition & 1 deletion bundled_program/tests/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@ def get_common_program() -> Tuple[Program, BundledConfig]:
DEFAULT_INT_INPUT,
)
program = (
exir.capture(eager_model, capture_input, CaptureConfig(pt2_mode=True))
exir.capture(eager_model, capture_input, CaptureConfig())
.to_edge()
.to_executorch()
.program
Expand Down
10 changes: 3 additions & 7 deletions exir/backend/test/demos/rpc/test_rpc.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def test_delegate_whole_program(self):
simple_net = self.get_a_simple_net()
simple_net_input = simple_net.get_example_inputs()
exported_program = exir.capture(
simple_net, simple_net_input, exir.CaptureConfig(pt2_mode=True)
simple_net, simple_net_input, exir.CaptureConfig()
).to_edge(
exir.EdgeCompileConfig(
_check_ir_validity=False,
Expand All @@ -125,9 +125,7 @@ def forward(self, *args):
composite_model = CompositeModule()

exec_prog = (
exir.capture(
composite_model, simple_net_input, exir.CaptureConfig(pt2_mode=True)
)
exir.capture(composite_model, simple_net_input, exir.CaptureConfig())
.to_edge()
.to_executorch()
)
Expand Down Expand Up @@ -165,9 +163,7 @@ def forward(self, a, x, b):
model = Model()
inputs = (torch.ones(2, 2), torch.ones(2, 2), torch.ones(2, 2))

exported_program = exir.capture(
model, inputs, exir.CaptureConfig(pt2_mode=True)
).to_edge()
exported_program = exir.capture(model, inputs, exir.CaptureConfig()).to_edge()

# First lower to demo backend
demo_backend_lowered = exported_program
Expand Down
6 changes: 2 additions & 4 deletions exir/backend/test/demos/test_delegate_aten_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def forward(self, a, x, b):
add_mul_module = AddMulModule()
model_inputs = (torch.ones(2, 2), 2 * torch.ones(2, 2), 3 * torch.ones(2, 2))
edge_graph_module = exir.capture(
add_mul_module, model_inputs, exir.CaptureConfig(pt2_mode=True)
add_mul_module, model_inputs, exir.CaptureConfig()
).to_edge()
max_value = model_inputs[0].shape[0]
compile_specs = [CompileSpec("max_value", bytes([max_value]))]
Expand All @@ -60,9 +60,7 @@ def forward(self, a, x, b):
composite_model(*model_inputs)

exec_prog = (
exir.capture(
composite_model, model_inputs, exir.CaptureConfig(pt2_mode=True)
)
exir.capture(composite_model, model_inputs, exir.CaptureConfig())
.to_edge()
.to_executorch()
)
Expand Down
2 changes: 1 addition & 1 deletion exir/backend/test/demos/test_xnnpack_qnnpack.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def forward(self, x, y):
)

# Step 2: EXIR capturing
capture_config = CaptureConfig(pt2_mode=True, enable_dynamic_shape=False)
capture_config = CaptureConfig(enable_dynamic_shape=False)
captured_mod = exir.capture(
converted_mod, example_inputs, config=capture_config
).to_edge(
Expand Down
12 changes: 6 additions & 6 deletions exir/backend/test/hta_partitioner_demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def forward(self, x_raw, h, c):
exir.capture(
LSTMConvPattern(),
(input_x, input_h, input_c),
exir.CaptureConfig(pt2_mode=True, enable_aot=True),
exir.CaptureConfig(enable_aot=True),
)
.to_edge(
# torch._export.verifier.SpecViolationError: Operator torch._ops.aten.mkldnn_rnn_layer.default is not Aten Canonical.
Expand All @@ -74,7 +74,7 @@ def forward(self, x_raw, h, c):
exir.capture(
LSTMConvPattern(),
(input_x, input_h, input_c),
exir.CaptureConfig(pt2_mode=True),
exir.CaptureConfig(),
)
.to_edge(
# torch._export.verifier.SpecViolationError: Operator torch._ops.aten.mkldnn_rnn_layer.default is not Aten Canonical.
Expand All @@ -90,7 +90,7 @@ def sub(x, y):
exir.capture(
sub,
(input_x, input_h),
exir.CaptureConfig(pt2_mode=True, enable_aot=True, _unlift=False),
exir.CaptureConfig(enable_aot=True, _unlift=False),
)
.to_edge(exir.EdgeCompileConfig(_use_edge_ops=True))
.exported_program.graph_module
Expand All @@ -99,7 +99,7 @@ def sub(x, y):
exir.capture(
sub,
(input_x, input_h),
exir.CaptureConfig(pt2_mode=True),
exir.CaptureConfig(),
)
.to_edge()
.exported_program.graph_module
Expand Down Expand Up @@ -236,7 +236,7 @@ def forward(self, x_raw, h, c):
exir.capture(
LSTMConvPattern(),
(input_x, input_h, input_c),
exir.CaptureConfig(pt2_mode=True, enable_aot=True),
exir.CaptureConfig(enable_aot=True),
)
.to_edge(
# torch._export.verifier.SpecViolationError: Operator torch._ops.aten.mkldnn_rnn_layer.default is not Aten Canonical.
Expand All @@ -248,7 +248,7 @@ def forward(self, x_raw, h, c):
exir.capture(
LSTMConvPattern(),
(input_x, input_h, input_c),
exir.CaptureConfig(pt2_mode=True),
exir.CaptureConfig(),
)
.to_edge(
# torch._export.verifier.SpecViolationError: Operator torch._ops.aten.mkldnn_rnn_layer.default is not Aten Canonical.
Expand Down
Loading