Skip to content

Support Half/BFloat16 in native_group_norm (needs accuracy fix) #7846

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 8 additions & 7 deletions kernels/portable/cpu/op_native_group_norm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,9 @@ void group_norm(
// compute E[X] and Var[x] = E[x^2] - E[x]^2
CTYPE sum = reduce_add(x, inner_size);
CTYPE sq_sum = vec_powerf(x, inner_size);
CTYPE mean_value = sum / inner_size;
CTYPE variance = sq_sum / inner_size - mean_value * mean_value;
CTYPE mean_value = sum / static_cast<CTYPE>(inner_size);
CTYPE variance =
sq_sum / static_cast<CTYPE>(inner_size) - mean_value * mean_value;
CTYPE std = std::sqrt(variance + eps);
CTYPE rstd_value = 1.0 / std;

Expand All @@ -93,10 +94,10 @@ void group_norm(
const size_t g = i % G;
for (size_t j = 0; j < D; j++) {
const size_t ch = g * D + j;
const CTYPE scale =
rstd_value * (weight_data == nullptr ? 1.0 : weight_data[ch]);
const CTYPE beta =
-scale * mean_value + (bias_data == nullptr ? 0.0 : bias_data[ch]);
const CTYPE scale = rstd_value *
(weight_data == nullptr ? CTYPE(1.0) : weight_data[ch]);
const CTYPE beta = -scale * mean_value +
(bias_data == nullptr ? CTYPE(0.0) : bias_data[ch]);
x = input_data + (i * D + j) * HxW;
CTYPE* y = out_data + (i * D + j) * HxW;
for (size_t k = 0; k < HxW; k++) {
Expand Down Expand Up @@ -185,7 +186,7 @@ std::tuple<Tensor&, Tensor&, Tensor&> native_group_norm_out(

constexpr auto name = "native_group_norm.out";

ET_SWITCH_FLOAT_TYPES(input.scalar_type(), ctx, name, CTYPE, [&]() {
ET_SWITCH_FLOATHBF16_TYPES(input.scalar_type(), ctx, name, CTYPE, [&]() {
group_norm<CTYPE>(
input, weight, bias, N, C, HxW, group, eps, out, mean_out, rstd_out);
});
Expand Down
238 changes: 134 additions & 104 deletions kernels/test/op_native_group_norm_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,110 +20,140 @@ using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;

::std::tuple<Tensor&, Tensor&, Tensor&> op_native_group_norm_out(
const Tensor& input,
const optional<Tensor>& weight,
const optional<Tensor>& bias,
int64_t N,
int64_t C,
int64_t HxW,
int64_t group,
double eps,
Tensor& out0,
Tensor& out1,
Tensor& out2) {
executorch::runtime::KernelRuntimeContext context{};
return torch::executor::aten::native_group_norm_outf(
context, input, weight, bias, N, C, HxW, group, eps, out0, out1, out2);
}
class OpNativeGroupNormOutTest : public OperatorTest {
protected:
::std::tuple<Tensor&, Tensor&, Tensor&> op_native_group_norm_out(
const Tensor& input,
const optional<Tensor>& weight,
const optional<Tensor>& bias,
int64_t N,
int64_t C,
int64_t HxW,
int64_t group,
double eps,
Tensor& out0,
Tensor& out1,
Tensor& out2) {
executorch::runtime::KernelRuntimeContext context{};
return torch::executor::aten::native_group_norm_outf(
context, input, weight, bias, N, C, HxW, group, eps, out0, out1, out2);
}
template <ScalarType DTYPE>
void test_dtype() {
TensorFactory<DTYPE> tf;

TEST(OpNativeGroupNormOutTest, SmokeTest) {
TensorFactory<ScalarType::Float> tfFloat;
Tensor input = tf.make(
{5, 6, 2, 2},
{-0.8125, 0.0625, -2.7500, -3.0625, -1.1250, -2.1250, -1.3125,
-4.0625, 2.8125, -2.0625, 4.2500, 3.5000, -0.3750, 1.6250,
4.3125, -1.0625, -2.8750, 3.3750, 4.9375, 4.0625, -3.0625,
-1.8750, -2.7500, -2.5625, -0.1875, -3.0000, -2.7500, 0.6875,
-3.2500, -3.1875, 1.0000, -4.6250, -0.1875, -1.7500, 4.5000,
-1.8750, -2.6875, 4.8125, -3.8125, -2.9375, -1.1875, 2.8750,
0.7500, 2.8750, 1.1250, -0.6250, -2.2500, -3.7500, 3.2500,
-0.3750, -2.0625, -4.7500, 2.0625, 3.0000, -3.1875, -4.1250,
-3.7500, 1.2500, -2.3125, 1.5625, 3.1250, 0.3125, 3.2500,
-2.7500, -3.8125, -4.2500, -4.3125, -0.5625, -0.4375, 2.9375,
-1.3750, -0.6250, -2.5625, -4.5625, 0.1250, -3.5000, -5.0000,
-1.0000, -4.6875, -0.6875, 1.1250, 1.8750, -4.5000, 4.3125,
4.5625, 0.2500, -3.6250, 4.5625, -3.5000, -2.1250, -3.6250,
-2.9375, 3.6875, 3.9375, 4.3750, 3.0625, 2.4375, 2.0625,
-2.4375, -3.9375, 3.6875, 2.7500, -0.8750, -0.9375, 2.7500,
-2.4375, -2.3750, -0.9375, -4.8750, 0.1875, 3.5000, -2.0000,
-0.2500, -2.7500, 0.3125, 1.2500, -0.5625, 0.0000, 1.8125,
1.0625});
optional<Tensor> weight =
tf.make({6}, {4.5625, -2.8750, -0.6875, 0.5625, -2.0625, -2.7500});
optional<Tensor> bias =
tf.make({6}, {-0.5000, -2.7500, 1.1875, 3.6875, 3.8125, 4.6875});
double eps = 1e-5;
Tensor out0 = tf.zeros({5, 6, 2, 2});
Tensor out1 = tf.zeros({5, 3});
Tensor out2 = tf.zeros({5, 3});
Tensor out0_expected = tf.make(
{5, 6, 2, 2},
{3.419882, 6.578348, -3.573864, -4.701888, -4.509254, -2.234663,
-4.082768, 2.172355, 0.838826, 2.270225, 0.416747, 0.636962,
3.207030, 3.687500, 4.333131, 3.041869, 5.547079, 1.649148,
0.674665, 1.220376, 7.156189, 6.168714, 6.896327, 6.740410,
3.509863, -3.022041, -2.441427, 5.542011, -0.794903, -0.886369,
-7.014627, 1.217361, 1.120617, 1.463606, 0.091652, 1.491045,
3.293219, 4.640229, 3.091168, 3.248319, 4.895990, 1.114683,
3.092597, 1.114683, 3.262238, 5.434066, 7.450763, 9.312329,
5.570122, 0.101119, -2.444796, -6.499403, -5.446074, -6.337338,
-0.454995, 0.436269, 2.228491, 0.871598, 1.838385, 0.786793,
4.362284, 3.737805, 4.390039, 3.057817, 5.814659, 6.202621,
6.258044, 2.932658, 3.366583, -0.623879, 4.475045, 3.588276,
-0.082914, -4.936279, 6.438795, -2.357929, 0.714463, -5.402106,
0.236606, -5.879963, 1.176247, 1.021916, 2.333727, 0.520341,
4.275447, 3.549392, 2.896994, 4.275447, 6.120910, 5.298480,
6.195676, 5.784461, 2.033296, 1.833920, 1.485010, 2.531738,
3.193988, 2.532378, -5.406940, -8.053379, -6.467402, -5.425139,
-1.395059, -1.325575, 0.266062, 1.622680, 1.606336, 1.230405,
2.809896, 3.893110, 4.601880, 3.425055, 4.374411, 8.283354,
3.494898, 2.029045, 6.088204, 4.915522, 1.136877, 2.700454});
Tensor out1_expected = tf.make(
{5, 3},
{-1.89843750,
1.62500000,
-0.09375000,
-1.91406250,
-0.49218744,
-0.02343750,
-0.77343756,
0.08593753,
-1.55468738,
-2.73437500,
1.07031238,
0.35937503,
0.34374997,
-0.77343750,
0.10937499});
Tensor out2_expected = tf.make(
{5, 3},
{0.79116172,
0.42708409,
0.30238494,
0.50903118,
0.31929117,
0.45128885,
0.33067191,
0.39473253,
0.42994878,
0.53187561,
0.29930803,
0.29000264,
0.38669431,
0.38038814,
0.75809801});
op_native_group_norm_out(
input, weight, bias, 5, 6, 4, 3, eps, out0, out1, out2);
if (DTYPE == ScalarType::Half || DTYPE == ScalarType::BFloat16) {
EXPECT_TENSOR_CLOSE_WITH_TOL(
out0,
out0_expected,
5e-3,
5e-3);
EXPECT_TENSOR_CLOSE_WITH_TOL(
out1,
out1_expected,
1e-2,
executorch::runtime::testing::internal::kDefaultAtol);
EXPECT_TENSOR_CLOSE_WITH_TOL(
out2,
out2_expected,
1e-2,
executorch::runtime::testing::internal::kDefaultAtol);
} else {
EXPECT_TENSOR_CLOSE(out0, out0_expected);
EXPECT_TENSOR_CLOSE(out1, out1_expected);
EXPECT_TENSOR_CLOSE(out2, out2_expected);
}
}
};

Tensor input = tfFloat.make(
{5, 6, 2, 2},
{-0.8125, 0.0625, -2.7500, -3.0625, -1.1250, -2.1250, -1.3125, -4.0625,
2.8125, -2.0625, 4.2500, 3.5000, -0.3750, 1.6250, 4.3125, -1.0625,
-2.8750, 3.3750, 4.9375, 4.0625, -3.0625, -1.8750, -2.7500, -2.5625,
-0.1875, -3.0000, -2.7500, 0.6875, -3.2500, -3.1875, 1.0000, -4.6250,
-0.1875, -1.7500, 4.5000, -1.8750, -2.6875, 4.8125, -3.8125, -2.9375,
-1.1875, 2.8750, 0.7500, 2.8750, 1.1250, -0.6250, -2.2500, -3.7500,
3.2500, -0.3750, -2.0625, -4.7500, 2.0625, 3.0000, -3.1875, -4.1250,
-3.7500, 1.2500, -2.3125, 1.5625, 3.1250, 0.3125, 3.2500, -2.7500,
-3.8125, -4.2500, -4.3125, -0.5625, -0.4375, 2.9375, -1.3750, -0.6250,
-2.5625, -4.5625, 0.1250, -3.5000, -5.0000, -1.0000, -4.6875, -0.6875,
1.1250, 1.8750, -4.5000, 4.3125, 4.5625, 0.2500, -3.6250, 4.5625,
-3.5000, -2.1250, -3.6250, -2.9375, 3.6875, 3.9375, 4.3750, 3.0625,
2.4375, 2.0625, -2.4375, -3.9375, 3.6875, 2.7500, -0.8750, -0.9375,
2.7500, -2.4375, -2.3750, -0.9375, -4.8750, 0.1875, 3.5000, -2.0000,
-0.2500, -2.7500, 0.3125, 1.2500, -0.5625, 0.0000, 1.8125, 1.0625});
optional<Tensor> weight =
tfFloat.make({6}, {4.5625, -2.8750, -0.6875, 0.5625, -2.0625, -2.7500});
optional<Tensor> bias =
tfFloat.make({6}, {-0.5000, -2.7500, 1.1875, 3.6875, 3.8125, 4.6875});
double eps = 1e-5;
Tensor out0 = tfFloat.zeros({5, 6, 2, 2});
Tensor out1 = tfFloat.zeros({5, 3});
Tensor out2 = tfFloat.zeros({5, 3});
Tensor out0_expected = tfFloat.make(
{5, 6, 2, 2},
{3.419882, 6.578348, -3.573864, -4.701888, -4.509254, -2.234663,
-4.082768, 2.172355, 0.838826, 2.270225, 0.416747, 0.636962,
3.207030, 3.687500, 4.333131, 3.041869, 5.547079, 1.649148,
0.674665, 1.220376, 7.156189, 6.168714, 6.896327, 6.740410,
3.509863, -3.022041, -2.441427, 5.542011, -0.794903, -0.886369,
-7.014627, 1.217361, 1.120617, 1.463606, 0.091652, 1.491045,
3.293219, 4.640229, 3.091168, 3.248319, 4.895990, 1.114683,
3.092597, 1.114683, 3.262238, 5.434066, 7.450763, 9.312329,
5.570122, 0.101119, -2.444796, -6.499403, -5.446074, -6.337338,
-0.454995, 0.436269, 2.228491, 0.871598, 1.838385, 0.786793,
4.362284, 3.737805, 4.390039, 3.057817, 5.814659, 6.202621,
6.258044, 2.932658, 3.366583, -0.623879, 4.475045, 3.588276,
-0.082914, -4.936279, 6.438795, -2.357929, 0.714463, -5.402106,
0.236606, -5.879963, 1.176247, 1.021916, 2.333727, 0.520341,
4.275447, 3.549392, 2.896994, 4.275447, 6.120910, 5.298480,
6.195676, 5.784461, 2.033296, 1.833920, 1.485010, 2.531738,
3.193988, 2.532378, -5.406940, -8.053379, -6.467402, -5.425139,
-1.395059, -1.325575, 0.266062, 1.622680, 1.606336, 1.230405,
2.809896, 3.893110, 4.601880, 3.425055, 4.374411, 8.283354,
3.494898, 2.029045, 6.088204, 4.915522, 1.136877, 2.700454});
Tensor out1_expected = tfFloat.make(
{5, 3},
{-1.89843750,
1.62500000,
-0.09375000,
-1.91406250,
-0.49218744,
-0.02343750,
-0.77343756,
0.08593753,
-1.55468738,
-2.73437500,
1.07031238,
0.35937503,
0.34374997,
-0.77343750,
0.10937499});
Tensor out2_expected = tfFloat.make(
{5, 3},
{0.79116172,
0.42708409,
0.30238494,
0.50903118,
0.31929117,
0.45128885,
0.33067191,
0.39473253,
0.42994878,
0.53187561,
0.29930803,
0.29000264,
0.38669431,
0.38038814,
0.75809801});
op_native_group_norm_out(
input, weight, bias, 5, 6, 4, 3, eps, out0, out1, out2);
EXPECT_TENSOR_CLOSE(out0, out0_expected);
EXPECT_TENSOR_CLOSE(out1, out1_expected);
EXPECT_TENSOR_CLOSE(out2, out2_expected);
TEST_F(OpNativeGroupNormOutTest, SmokeTest) {
#define TEST_ENTRY(ctype, dtype) test_dtype<ScalarType::dtype>();
ET_FORALL_FLOATHBF16_TYPES(TEST_ENTRY)
#undef TEST_ENTRY
}
Loading