Skip to content

move sampler into TV core. Update UniformClipSampler #1408

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Oct 4, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion references/video_classification/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,10 @@
import torchvision
import torchvision.datasets.video_utils
from torchvision import transforms
from torchvision.datasets.samplers import DistributedSampler, UniformClipSampler, RandomClipSampler

import utils
from sampler import DistributedSampler, UniformClipSampler, RandomClipSampler

from scheduler import WarmupMultiStepLR
import transforms as T

Expand Down
88 changes: 88 additions & 0 deletions test/test_datasets_samplers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
import contextlib
import sys
import os
import torch
import unittest

from torchvision import io
from torchvision.datasets.samplers import RandomClipSampler, UniformClipSampler
from torchvision.datasets.video_utils import VideoClips, unfold
from torchvision import get_video_backend

from common_utils import get_tmp_dir


@contextlib.contextmanager
def get_list_of_videos(num_videos=5, sizes=None, fps=None):
with get_tmp_dir() as tmp_dir:
names = []
for i in range(num_videos):
if sizes is None:
size = 5 * (i + 1)
else:
size = sizes[i]
if fps is None:
f = 5
else:
f = fps[i]
data = torch.randint(0, 255, (size, 300, 400, 3), dtype=torch.uint8)
name = os.path.join(tmp_dir, "{}.mp4".format(i))
names.append(name)
io.write_video(name, data, fps=f)

yield names


@unittest.skipIf(not io.video._av_available(), "this test requires av")
class Tester(unittest.TestCase):
def test_random_clip_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
self.assertTrue(count.equal(torch.tensor([3, 3, 3])))

def test_random_clip_sampler_unequal(self):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 2 + 3 + 3)
indices = list(iter(sampler))
self.assertIn(0, indices)
self.assertIn(1, indices)
# remove elements of the first video, to simplify testing
indices.remove(0)
indices.remove(1)
indices = torch.tensor(indices) - 2
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1])))
self.assertTrue(count.equal(torch.tensor([3, 3])))

def test_uniform_clip_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = UniformClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
self.assertTrue(count.equal(torch.tensor([3, 3, 3])))
self.assertTrue(indices.equal(torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14])))

def test_uniform_clip_sampler_insufficient_clips(self):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = UniformClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
self.assertTrue(indices.equal(torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11])))


if __name__ == '__main__':
unittest.main()
30 changes: 0 additions & 30 deletions test/test_datasets_video_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,36 +83,6 @@ def test_video_clips(self):
self.assertEqual(video_idx, v_idx)
self.assertEqual(clip_idx, c_idx)

@unittest.skip("Moved to reference scripts for now")
def test_video_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3) # noqa: F821
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
self.assertTrue(count.equal(torch.tensor([3, 3, 3])))

@unittest.skip("Moved to reference scripts for now")
def test_video_sampler_unequal(self):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3) # noqa: F821
self.assertEqual(len(sampler), 2 + 3 + 3)
indices = list(iter(sampler))
self.assertIn(0, indices)
self.assertIn(1, indices)
# remove elements of the first video, to simplify testing
indices.remove(0)
indices.remove(1)
indices = torch.tensor(indices) - 2
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1])))
self.assertTrue(count.equal(torch.tensor([3, 3])))

@unittest.skipIf(not io.video._av_available(), "this test requires av")
@unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
def test_video_clips_custom_fps(self):
Expand Down
3 changes: 3 additions & 0 deletions torchvision/datasets/samplers/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .clip_sampler import DistributedSampler, UniformClipSampler, RandomClipSampler

__all__ = ('DistributedSampler', 'UniformClipSampler', 'RandomClipSampler')
Original file line number Diff line number Diff line change
Expand Up @@ -60,33 +60,45 @@ def set_epoch(self, epoch):

class UniformClipSampler(torch.utils.data.Sampler):
"""
Samples at most `max_video_clips_per_video` clips for each video, equally spaced
Sample `num_video_clips_per_video` clips for each video, equally spaced.
When number of unique clips in the video is fewer than num_video_clips_per_video,
repeat the clips until `num_video_clips_per_video` clips are collected

Arguments:
video_clips (VideoClips): video clips to sample from
max_clips_per_video (int): maximum number of clips to be sampled per video
num_clips_per_video (int): number of clips to be sampled per video
"""
def __init__(self, video_clips, max_clips_per_video):
def __init__(self, video_clips, num_clips_per_video):
if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips):
raise TypeError("Expected video_clips to be an instance of VideoClips, "
"got {}".format(type(video_clips)))
self.video_clips = video_clips
self.max_clips_per_video = max_clips_per_video
self.num_clips_per_video = num_clips_per_video

def __iter__(self):
idxs = []
s = 0
# select at most max_clips_per_video for each video, uniformly spaced
# select num_clips_per_video for each video, uniformly spaced
for c in self.video_clips.clips:
length = len(c)
step = max(length // self.max_clips_per_video, 1)
sampled = torch.arange(length)[::step] + s
if length == 0:
# corner case where video decoding fails
continue

sampled = (
torch.linspace(s, s + length - 1, steps=self.num_clips_per_video)
.floor()
.to(torch.int64)
)
s += length
idxs.append(sampled)
idxs = torch.cat(idxs).tolist()
return iter(idxs)

def __len__(self):
return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)
return sum(
self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0
)


class RandomClipSampler(torch.utils.data.Sampler):
Expand Down