Skip to content

Unify onnx and JIT resize implementations #3654

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 9, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 23 additions & 27 deletions torchvision/models/detection/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,36 +10,35 @@


@torch.jit.unused
def _resize_image_and_masks_onnx(image, self_min_size, self_max_size, target):
# type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]
def _get_shape_onnx(image):
# type: (Tensor) -> Tensor
from torch.onnx import operators
im_shape = operators.shape_as_tensor(image)[-2:]
min_size = torch.min(im_shape).to(dtype=torch.float32)
max_size = torch.max(im_shape).to(dtype=torch.float32)
scale_factor = torch.min(self_min_size / min_size, self_max_size / max_size)

image = torch.nn.functional.interpolate(
image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True,
align_corners=False)[0]
return operators.shape_as_tensor(image)[-2:]

if target is None:
return image, target

if "masks" in target:
mask = target["masks"]
mask = F.interpolate(mask[:, None].float(), scale_factor=scale_factor, recompute_scale_factor=True)[:, 0].byte()
target["masks"] = mask
return image, target
@torch.jit.unused
def _fake_cast_onnx(v):
# type: (Tensor) -> float
# ONNX requires a tensor but here we fake its type for JIT.
return v


def _resize_image_and_masks(image, self_min_size, self_max_size, target):
# type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]
im_shape = torch.tensor(image.shape[-2:])
min_size = float(torch.min(im_shape))
max_size = float(torch.max(im_shape))
scale_factor = self_min_size / min_size
if max_size * scale_factor > self_max_size:
scale_factor = self_max_size / max_size
if torchvision._is_tracing():
im_shape = _get_shape_onnx(image)
else:
im_shape = torch.tensor(image.shape[-2:])

min_size = torch.min(im_shape).to(dtype=torch.float32)
max_size = torch.max(im_shape).to(dtype=torch.float32)
scale = torch.min(self_min_size / min_size, self_max_size / max_size)

if torchvision._is_tracing():
scale_factor = _fake_cast_onnx(scale)
else:
scale_factor = scale.item()

image = torch.nn.functional.interpolate(
image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True,
align_corners=False)[0]
Expand Down Expand Up @@ -145,10 +144,7 @@ def resize(self, image, target):
else:
# FIXME assume for now that testing uses the largest scale
size = float(self.min_size[-1])
if torchvision._is_tracing():
image, target = _resize_image_and_masks_onnx(image, size, float(self.max_size), target)
else:
image, target = _resize_image_and_masks(image, size, float(self.max_size), target)
image, target = _resize_image_and_masks(image, size, float(self.max_size), target)

if target is None:
return image, target
Expand Down