Skip to content

port RandomHorizontalFlip to prototype API #5563

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 56 additions & 2 deletions test/test_prototype_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,10 @@

import pytest
import torch
from common_utils import assert_equal
from test_prototype_transforms_functional import make_images, make_bounding_boxes, make_one_hot_labels
from torchvision.prototype import transforms, features
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.functional import to_pil_image, pil_to_tensor


def make_vanilla_tensor_images(*args, **kwargs):
Expand Down Expand Up @@ -66,10 +67,10 @@ def parametrize_from_transforms(*transforms):
class TestSmoke:
@parametrize_from_transforms(
transforms.RandomErasing(p=1.0),
transforms.HorizontalFlip(),
transforms.Resize([16, 16]),
transforms.CenterCrop([16, 16]),
transforms.ConvertImageDtype(),
transforms.RandomHorizontalFlip(),
)
def test_common(self, transform, input):
transform(input)
Expand Down Expand Up @@ -188,3 +189,56 @@ def test_random_resized_crop(self, transform, input):
)
def test_convert_image_color_space(self, transform, input):
transform(input)


@pytest.mark.parametrize("p", [0.0, 1.0])
class TestRandomHorizontalFlip:
def input_expected_image_tensor(self, p, dtype=torch.float32):
input = torch.tensor([[[0, 1], [0, 1]], [[1, 0], [1, 0]]], dtype=dtype)
expected = torch.tensor([[[1, 0], [1, 0]], [[0, 1], [0, 1]]], dtype=dtype)

return input, expected if p == 1 else input

def test_simple_tensor(self, p):
input, expected = self.input_expected_image_tensor(p)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(input)

assert_equal(expected, actual)

def test_pil_image(self, p):
input, expected = self.input_expected_image_tensor(p, dtype=torch.uint8)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(to_pil_image(input))

assert_equal(expected, pil_to_tensor(actual))

def test_features_image(self, p):
input, expected = self.input_expected_image_tensor(p)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(features.Image(input))

assert_equal(features.Image(expected), actual)

def test_features_segmentation_mask(self, p):
input, expected = self.input_expected_image_tensor(p)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(features.SegmentationMask(input))

assert_equal(features.SegmentationMask(expected), actual)

def test_features_bounding_box(self, p):
input = features.BoundingBox([0, 0, 5, 5], format=features.BoundingBoxFormat.XYXY, image_size=(10, 10))
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(input)

expected_image_tensor = torch.tensor([5, 0, 10, 5]) if p == 1.0 else input
expected = features.BoundingBox.new_like(input, data=expected_image_tensor)
assert_equal(expected, actual)
assert actual.format == expected.format
assert actual.image_size == expected.image_size
2 changes: 1 addition & 1 deletion torchvision/prototype/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,13 @@
from ._auto_augment import RandAugment, TrivialAugmentWide, AutoAugment, AugMix
from ._container import Compose, RandomApply, RandomChoice, RandomOrder
from ._geometry import (
HorizontalFlip,
Resize,
CenterCrop,
RandomResizedCrop,
FiveCrop,
TenCrop,
BatchMultiCrop,
RandomHorizontalFlip,
RandomZoomOut,
)
from ._meta import ConvertBoundingBoxFormat, ConvertImageDtype, ConvertImageColorSpace
Expand Down
16 changes: 15 additions & 1 deletion torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,25 @@
from ._utils import query_image, get_image_dimensions, has_any, is_simple_tensor


class HorizontalFlip(Transform):
class RandomHorizontalFlip(Transform):
def __init__(self, p: float = 0.5) -> None:
super().__init__()
self.p = p

def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]
if torch.rand(1) >= self.p:
return sample

return super().forward(sample)

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if isinstance(input, features.Image):
output = F.horizontal_flip_image_tensor(input)
return features.Image.new_like(input, output)
elif isinstance(input, features.SegmentationMask):
output = F.horizontal_flip_segmentation_mask(input)
return features.SegmentationMask.new_like(input, output)
elif isinstance(input, features.BoundingBox):
output = F.horizontal_flip_bounding_box(input, format=input.format, image_size=input.image_size)
return features.BoundingBox.new_like(input, output)
Expand Down
1 change: 1 addition & 0 deletions torchvision/prototype/transforms/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
horizontal_flip_bounding_box,
horizontal_flip_image_tensor,
horizontal_flip_image_pil,
horizontal_flip_segmentation_mask,
resize_bounding_box,
resize_image_tensor,
resize_image_pil,
Expand Down
4 changes: 4 additions & 0 deletions torchvision/prototype/transforms/functional/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@
horizontal_flip_image_pil = _FP.hflip


def horizontal_flip_segmentation_mask(segmentation_mask: torch.Tensor) -> torch.Tensor:
return horizontal_flip_image_tensor(segmentation_mask)


def horizontal_flip_bounding_box(
bounding_box: torch.Tensor, format: features.BoundingBoxFormat, image_size: Tuple[int, int]
) -> torch.Tensor:
Expand Down