Skip to content

Setting weights_backbone to its fully BC value #5653

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 21, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions test/test_backbone_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,30 +23,30 @@ def get_available_models():
@pytest.mark.parametrize("backbone_name", ("resnet18", "resnet50"))
def test_resnet_fpn_backbone(backbone_name):
x = torch.rand(1, 3, 300, 300, dtype=torch.float32, device="cpu")
model = resnet_fpn_backbone(backbone_name=backbone_name)
model = resnet_fpn_backbone(backbone_name=backbone_name, weights=None)
assert isinstance(model, BackboneWithFPN)
y = model(x)
assert list(y.keys()) == ["0", "1", "2", "3", "pool"]

with pytest.raises(ValueError, match=r"Trainable layers should be in the range"):
resnet_fpn_backbone(backbone_name=backbone_name, trainable_layers=6)
resnet_fpn_backbone(backbone_name=backbone_name, weights=None, trainable_layers=6)
with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
resnet_fpn_backbone(backbone_name=backbone_name, returned_layers=[0, 1, 2, 3])
resnet_fpn_backbone(backbone_name=backbone_name, weights=None, returned_layers=[0, 1, 2, 3])
with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
resnet_fpn_backbone(backbone_name=backbone_name, returned_layers=[2, 3, 4, 5])
resnet_fpn_backbone(backbone_name=backbone_name, weights=None, returned_layers=[2, 3, 4, 5])


@pytest.mark.parametrize("backbone_name", ("mobilenet_v2", "mobilenet_v3_large", "mobilenet_v3_small"))
def test_mobilenet_backbone(backbone_name):
with pytest.raises(ValueError, match=r"Trainable layers should be in the range"):
mobilenet_backbone(backbone_name=backbone_name, fpn=False, trainable_layers=-1)
mobilenet_backbone(backbone_name=backbone_name, weights=None, fpn=False, trainable_layers=-1)
with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
mobilenet_backbone(backbone_name=backbone_name, fpn=True, returned_layers=[-1, 0, 1, 2])
mobilenet_backbone(backbone_name=backbone_name, weights=None, fpn=True, returned_layers=[-1, 0, 1, 2])
with pytest.raises(ValueError, match=r"Each returned layer should be in the range"):
mobilenet_backbone(backbone_name=backbone_name, fpn=True, returned_layers=[3, 4, 5, 6])
model_fpn = mobilenet_backbone(backbone_name=backbone_name, fpn=True)
mobilenet_backbone(backbone_name=backbone_name, weights=None, fpn=True, returned_layers=[3, 4, 5, 6])
model_fpn = mobilenet_backbone(backbone_name=backbone_name, weights=None, fpn=True)
assert isinstance(model_fpn, BackboneWithFPN)
model = mobilenet_backbone(backbone_name=backbone_name, fpn=False)
model = mobilenet_backbone(backbone_name=backbone_name, weights=None, fpn=False)
assert isinstance(model, torch.nn.Sequential)


Expand Down
10 changes: 6 additions & 4 deletions test/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -428,7 +428,7 @@ def test_inception_v3_eval():


def test_fasterrcnn_double():
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50)
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
model.double()
model.eval()
input_shape = (3, 300, 300)
Expand Down Expand Up @@ -467,7 +467,7 @@ def checkOut(out):
assert "scores" in out[0]
assert "labels" in out[0]

model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50)
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
model.cuda()
model.eval()
input_shape = (3, 300, 300)
Expand Down Expand Up @@ -583,6 +583,7 @@ def test_segmentation_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 10,
"weights_backbone": None,
"input_shape": (1, 3, 32, 32),
}
model_name = model_fn.__name__
Expand Down Expand Up @@ -644,6 +645,7 @@ def test_detection_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 50,
"weights_backbone": None,
"input_shape": (3, 300, 300),
}
model_name = model_fn.__name__
Expand Down Expand Up @@ -738,7 +740,7 @@ def compute_mean_std(tensor):
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
set_rng_seed(0)
model = model_fn(num_classes=50)
model = model_fn(num_classes=50, weights=None, weights_backbone=None)
input_shape = (3, 300, 300)
x = [torch.rand(input_shape)]

Expand Down Expand Up @@ -851,7 +853,7 @@ def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_load
max_trainable = _model_tests_values[model_name]["max_trainable"]
n_trainable_params = []
for trainable_layers in range(0, max_trainable + 1):
model = model_fn(weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)

n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]
Expand Down
22 changes: 16 additions & 6 deletions test/test_models_detection_negative_samples.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,9 @@ def test_assign_targets_to_proposals(self):
],
)
def test_forward_negative_sample_frcnn(self, name):
model = torchvision.models.detection.__dict__[name](num_classes=2, min_size=100, max_size=100)
model = torchvision.models.detection.__dict__[name](
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)

images, targets = self._make_empty_sample()
loss_dict = model(images, targets)
Expand All @@ -108,7 +110,9 @@ def test_forward_negative_sample_frcnn(self, name):
assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))

def test_forward_negative_sample_mrcnn(self):
model = torchvision.models.detection.maskrcnn_resnet50_fpn(num_classes=2, min_size=100, max_size=100)
model = torchvision.models.detection.maskrcnn_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)

images, targets = self._make_empty_sample(add_masks=True)
loss_dict = model(images, targets)
Expand All @@ -118,7 +122,9 @@ def test_forward_negative_sample_mrcnn(self):
assert_equal(loss_dict["loss_mask"], torch.tensor(0.0))

def test_forward_negative_sample_krcnn(self):
model = torchvision.models.detection.keypointrcnn_resnet50_fpn(num_classes=2, min_size=100, max_size=100)
model = torchvision.models.detection.keypointrcnn_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)

images, targets = self._make_empty_sample(add_keypoints=True)
loss_dict = model(images, targets)
Expand All @@ -128,15 +134,19 @@ def test_forward_negative_sample_krcnn(self):
assert_equal(loss_dict["loss_keypoint"], torch.tensor(0.0))

def test_forward_negative_sample_retinanet(self):
model = torchvision.models.detection.retinanet_resnet50_fpn(num_classes=2, min_size=100, max_size=100)
model = torchvision.models.detection.retinanet_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)

images, targets = self._make_empty_sample()
loss_dict = model(images, targets)

assert_equal(loss_dict["bbox_regression"], torch.tensor(0.0))

def test_forward_negative_sample_fcos(self):
model = torchvision.models.detection.fcos_resnet50_fpn(num_classes=2, min_size=100, max_size=100)
model = torchvision.models.detection.fcos_resnet50_fpn(
weights=None, weights_backbone=None, num_classes=2, min_size=100, max_size=100
)

images, targets = self._make_empty_sample()
loss_dict = model(images, targets)
Expand All @@ -145,7 +155,7 @@ def test_forward_negative_sample_fcos(self):
assert_equal(loss_dict["bbox_ctrness"], torch.tensor(0.0))

def test_forward_negative_sample_ssd(self):
model = torchvision.models.detection.ssd300_vgg16(num_classes=2)
model = torchvision.models.detection.ssd300_vgg16(weights=None, weights_backbone=None, num_classes=2)

images, targets = self._make_empty_sample()
loss_dict = model(images, targets)
Expand Down
2 changes: 1 addition & 1 deletion test/test_models_detection_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def test_resnet_fpn_backbone_frozen_layers(self, train_layers, exp_froz_params):
# be frozen for each trainable_backbone_layers parameter value
# i.e all 53 params are frozen if trainable_backbone_layers=0
# ad first 24 params are frozen if trainable_backbone_layers=2
model = backbone_utils.resnet_fpn_backbone("resnet50", trainable_layers=train_layers)
model = backbone_utils.resnet_fpn_backbone("resnet50", weights=None, trainable_layers=train_layers)
# boolean list that is true if the param at that index is frozen
is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
# check that expected initial number of layers are frozen
Expand Down
2 changes: 1 addition & 1 deletion test/tracing/frcnn/trace_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
HERE = osp.dirname(osp.abspath(__file__))
ASSETS = osp.dirname(osp.dirname(HERE))

model = torchvision.models.detection.fasterrcnn_resnet50_fpn()
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=None, weights_backbone=None)
model.eval()

traced_model = torch.jit.script(model)
Expand Down
6 changes: 3 additions & 3 deletions torchvision/models/detection/backbone_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def forward(self, x: Tensor) -> Dict[str, Tensor]:
def resnet_fpn_backbone(
*,
backbone_name: str,
weights: Optional[WeightsEnum] = None,
weights: Optional[WeightsEnum],
norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
trainable_layers: int = 3,
returned_layers: Optional[List[int]] = None,
Expand Down Expand Up @@ -171,8 +171,8 @@ def _validate_trainable_layers(
def mobilenet_backbone(
*,
backbone_name: str,
weights: Optional[WeightsEnum] = None,
fpn: bool = True,
weights: Optional[WeightsEnum],
fpn: bool,
norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
trainable_layers: int = 2,
returned_layers: Optional[List[int]] = None,
Expand Down
6 changes: 3 additions & 3 deletions torchvision/models/detection/faster_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,7 +384,7 @@ def fasterrcnn_resnet50_fpn(
weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[ResNet50_Weights] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> FasterRCNN:
Expand Down Expand Up @@ -529,7 +529,7 @@ def fasterrcnn_mobilenet_v3_large_320_fpn(
weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> FasterRCNN:
Expand Down Expand Up @@ -586,7 +586,7 @@ def fasterrcnn_mobilenet_v3_large_fpn(
weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> FasterRCNN:
Expand Down
2 changes: 1 addition & 1 deletion torchvision/models/detection/fcos.py
Original file line number Diff line number Diff line change
Expand Up @@ -670,7 +670,7 @@ def fcos_resnet50_fpn(
weights: Optional[FCOS_ResNet50_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[ResNet50_Weights] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> FCOS:
Expand Down
2 changes: 1 addition & 1 deletion torchvision/models/detection/keypoint_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,7 +356,7 @@ def keypointrcnn_resnet50_fpn(
progress: bool = True,
num_classes: Optional[int] = None,
num_keypoints: Optional[int] = None,
weights_backbone: Optional[ResNet50_Weights] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> KeypointRCNN:
Expand Down
2 changes: 1 addition & 1 deletion torchvision/models/detection/mask_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ def maskrcnn_resnet50_fpn(
weights: Optional[MaskRCNN_ResNet50_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[ResNet50_Weights] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> MaskRCNN:
Expand Down
2 changes: 1 addition & 1 deletion torchvision/models/detection/retinanet.py
Original file line number Diff line number Diff line change
Expand Up @@ -612,7 +612,7 @@ def retinanet_resnet50_fpn(
weights: Optional[RetinaNet_ResNet50_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[ResNet50_Weights] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> RetinaNet:
Expand Down
2 changes: 1 addition & 1 deletion torchvision/models/detection/ssd.py
Original file line number Diff line number Diff line change
Expand Up @@ -570,7 +570,7 @@ def ssd300_vgg16(
weights: Optional[SSD300_VGG16_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[VGG16_Weights] = None,
weights_backbone: Optional[VGG16_Weights] = VGG16_Weights.IMAGENET1K_FEATURES,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> SSD:
Expand Down
2 changes: 1 addition & 1 deletion torchvision/models/detection/ssdlite.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ def ssdlite320_mobilenet_v3_large(
weights: Optional[SSDLite320_MobileNet_V3_Large_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
**kwargs: Any,
Expand Down
6 changes: 3 additions & 3 deletions torchvision/models/segmentation/deeplabv3.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ def deeplabv3_resnet50(
progress: bool = True,
num_classes: Optional[int] = None,
aux_loss: Optional[bool] = None,
weights_backbone: Optional[ResNet50_Weights] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
**kwargs: Any,
) -> DeepLabV3:
"""Constructs a DeepLabV3 model with a ResNet-50 backbone.
Expand Down Expand Up @@ -256,7 +256,7 @@ def deeplabv3_resnet101(
progress: bool = True,
num_classes: Optional[int] = None,
aux_loss: Optional[bool] = None,
weights_backbone: Optional[ResNet101_Weights] = None,
weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1,
**kwargs: Any,
) -> DeepLabV3:
"""Constructs a DeepLabV3 model with a ResNet-101 backbone.
Expand Down Expand Up @@ -297,7 +297,7 @@ def deeplabv3_mobilenet_v3_large(
progress: bool = True,
num_classes: Optional[int] = None,
aux_loss: Optional[bool] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
**kwargs: Any,
) -> DeepLabV3:
"""Constructs a DeepLabV3 model with a MobileNetV3-Large backbone.
Expand Down
4 changes: 2 additions & 2 deletions torchvision/models/segmentation/fcn.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ def fcn_resnet50(
progress: bool = True,
num_classes: Optional[int] = None,
aux_loss: Optional[bool] = None,
weights_backbone: Optional[ResNet50_Weights] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
**kwargs: Any,
) -> FCN:
"""Constructs a Fully-Convolutional Network model with a ResNet-50 backbone.
Expand Down Expand Up @@ -152,7 +152,7 @@ def fcn_resnet101(
progress: bool = True,
num_classes: Optional[int] = None,
aux_loss: Optional[bool] = None,
weights_backbone: Optional[ResNet101_Weights] = None,
weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1,
**kwargs: Any,
) -> FCN:
"""Constructs a Fully-Convolutional Network model with a ResNet-101 backbone.
Expand Down
2 changes: 1 addition & 1 deletion torchvision/models/segmentation/lraspp.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ def lraspp_mobilenet_v3_large(
weights: Optional[LRASPP_MobileNet_V3_Large_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
**kwargs: Any,
) -> LRASPP:
"""Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone.
Expand Down